進階搜尋


 
系統識別號 U0026-0812200911173871
論文名稱(中文) 干擾素抑制抗藥性單純疱疹病毒之研究
論文名稱(英文) Interferons Reduce the Infection of Drug-Resistant Mutants of Herpes Simplex Virus Type 1
校院名稱 成功大學
系所名稱(中) 微生物及免疫學研究所
系所名稱(英) Department of Microbiology & Immunology
學年度 92
學期 2
出版年 93
研究生(中文) 黃文彥
研究生(英文) Wen-Yen Huang
學號 s4691404
學位類別 碩士
語文別 英文
論文頁數 30頁
口試委員 口試委員-黎慶
口試委員-余俊強
指導教授-陳舜華
中文關鍵字 干擾素 
英文關鍵字 IFN  HSV-1 
學科別分類
中文摘要   人類被單純?疹病毒感染後,病毒會終身潛伏在神經組織內。
臨床治療病毒的感染大都使用Acyclovir類的藥物去抑制病毒的複製,然而,如此會導致抗藥性的病毒 (通常是thymidine kinase突變株) 的出現而使治療無效,尤其在免疫不全的病人,因此尋找新的治療方式對付抗藥性病毒是十分重要的。過去已知干擾素(包含 .三型干擾素) 具有良好的抗病毒效果,以前的研究曾利用 及 干擾素結合
,可十分有效的對抗野生型單純?疹。因而本篇研究中,我們也利用干擾素結合的方式,嘗試去解決抗藥性病毒的問題。首先在細胞組織培養的實驗中,我們結合不同種類干擾素去抑制病毒在Vero細胞上的生長,發現當結合 及 干擾素時可有效抑制抗藥性病毒的生長達50倍之多,並且在感染前先給比感染後給還要好,相同抑制效果也可在人類的A549細胞株能看到。在小鼠動物實驗中,在感染動物前我們先給小鼠四次結合 及 干擾素治療,之後再感染2×106 PFU的294dltk抗藥性病毒,如此不但能抑制急性期病毒在眼睛複製高達1000倍,而且也抑制潛伏期病毒在三叉神經的復發,從70%復發率降至0%的復發率。
當在感染病毒後給干擾素也有相同的抑制作用,但在感染後越晚給效果越差。此外當感染另一種抗藥性病毒tkLTRZ1 (此病毒需要同時感染野生型病毒才能復發),結合 及 干擾素不但能抑制病毒急性期在小鼠眼睛、三叉神經及腦幹的生長,也能抑制病毒潛伏期從三叉神經、腦幹及脊神經的復發。為了模擬病毒在免疫不全的宿主身上感染的情形,我們感染了294dltk抗藥性病毒在裸鼠 (nude mice) 身上,當給予結合 及 干擾素治療後的小鼠,病毒在其眼睛生長的情形也能被有效的抑制下來。從以上的結果可知,結合 及 干擾素的治療是一個對付抗藥性?疹病毒的有效治療方式。


英文摘要   Herpes simplex virus type 1 infects and establishes latent infection in most humans for life. Acyclovir is the best drug for therapy to inhibit viral replication now, but drug-resistant [thymidine kinase negative (TK-)]mutants are reported frequently in the clinic. Interferons (IFNs), including IFN- , IFN- and IFN- , are potent antiviral cytokines.Based on the previous study, combination of IFN- and IFN- has the best efficacy to inhibit the replication of wild type virus.In this study, we tested this combination on TK- mutants in vitro using Vero cells and found that IFN- + IFN- reduced the plaque formation of TK-mutants by 50-folds,which they are resistant to acyclovir. In vivo, we infected mice with 2×106 PFU of TK- mutant virus (294dltk) by corneally inoculation, which can result in the reactivation of 294dltk under this condition.
The pretreatment of IFN- and IFN- reduced the viral replication in eyes about 1000-folds on day 1 post infection (p.i.) during acute phase and the ratio of viral reactivation in trigeminal ganglia from 70% to 0% at day 30 p.i. during latent phase. The posttreatment of IFNs also had the same effect but was not effective as pretreatment.
In addition, we tested this on tkLTRZ1 TK- mutant, which reactivates when co-infects with wild type virus. We found that the viral replication in eyes at day 1 p.i. and in ganglia at day 3 p.i. and the viral reactivation form ganglia, spinal cord and brain stem were reduced after treatment. In order to mimic the immunocompromiced hosts, we used 294dltk to infect ICR-nu mice.Then we compared the viral growth in eyes and ganglia. The preliminary evidence showed that IFNs are able to efficiently inhibit viral growth in immunocompromised hosts. These data suggest that combination of IFN- and IFN- may be an alternative therapy for drug-resistant herpes simplex virus type 1.


論文目次 INTRODUCTION……………………………………1
MATERIALS AND METHODS………………………5
RESULTS………………………………………………9
DISCUSSION…………………………………………13
REFERENCES…………………………………………16
TABLES………………………………………………20
FIGURES………………………………………………25
APPENDIX……………………………………………27
參考文獻 1. 2002. Sexually transmitted diseases treatment guidelines 2002. Centers for Disease Control and Prevention. MMWR Recomm Rep 51:1-78.
2. Al-khatib, K., B. R. Williams, R. H. Silverman, W. Halford, and D. J. Carr. 2003. The murine double-stranded RNA-dependent protein kinase PKR and the murine 2',5'-oligoadenylate synthetase-dependent RNase L are required for IFN-beta-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture. Virology 313:126-35.
3. Balish, M. J., M. E. Abrams, A. M. Pumfery, and C. R. Brandt. 1992. Enhanced inhibition of herpes simplex virus type 1 growth in human corneal fibroblasts by combinations of interferon-alpha and -gamma. J Infect Dis 166:1401-3.
4. Brady, R. C., and D. I. Bernstein. 2004. Treatment of herpes simplex virus infections. Antiviral Res 61:73-81.
5. Cantell, K. 1995. Development of antiviral therapy with alpha interferons: promises, false hopes and accomplishments. Ann Med 27:23-8.
6. Cantin, E., B. Tanamachi, and H. Openshaw. 1999. Role for gamma interferon in control of herpes simplex virus type 1 reactivation. J Virol 73:3418-23.
7. Cantin, E., B. Tanamachi, H. Openshaw, J. Mann, and K. Clarke. 1999. Gamma interferon (IFN-gamma) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-gamma ligand null-mutant mice. J Virol 73:5196-200.
8. Cantin, E. M., D. R. Hinton, J. Chen, and H. Openshaw. 1995. Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1. J Virol 69:4898-905.
9. Carr, D. J., K. Al-khatib, C. M. James, and R. Silverman. 2003. Interferon-beta suppresses herpes simplex virus type 1 replication in trigeminal ganglion cells through an RNase L-dependent pathway. J Neuroimmunol 141:40-6.
10. Carr, D. J., and S. Noisakran. 2002. The antiviral efficacy of the murine alpha-1 interferon transgene against ocular herpes simplex virus type 1 requires the presence of CD4(+), alpha/beta T-cell receptor-positive T lymphocytes with the capacity to produce gamma interferon. J Virol 76:9398-406.
11. Chesler, D. A., and C. S. Reiss. 2002. The role of IFN-gamma in immune responses to viral infections of the central nervous system. Cytokine Growth Factor Rev 13:441-54.
12. Christophers, J., J. Clayton, J. Craske, R. Ward, P. Collins, M. Trowbridge, and G. Darby. 1998. Survey of resistance of herpes simplex virus to acyclovir in northwest England. Antimicrob Agents Chemother 42:868-72.
13. Coen, D. M., M. Kosz-Vnenchak, J. G. Jacobson, D. A. Leib, C. L. Bogard, P. A. Schaffer, K. L. Tyler, and D. M. Knipe. 1989. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A 86:4736-40.
14. Czarniecki, C. W., C. W. Fennie, D. B. Powers, and D. A. Estell. 1984. Synergistic antiviral and antiproliferative activities of Escherichia coli-derived human alpha, beta, and gamma interferons. J Virol 49:490-6.
15. Davar, G., M. F. Kramer, D. Garber, A. L. Roca, J. K. Andersen, W. Bebrin, D. M. Coen, M. Kosz-Vnenchak, D. M. Knipe, X. O. Breakefield, and et al. 1994. Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J Comp Neurol 339:3-11.
16. Ellis, M. N., R. Waters, E. L. Hill, D. C. Lobe, D. W. Selleseth, and D. W. Barry. 1989. Orofacial infection of athymic mice with defined mixtures of acyclovir-susceptible and acyclovir-resistant herpes simplex virus type 1. Antimicrob Agents Chemother 33:304-10.
17. Englund, J. A., M. E. Zimmerman, E. M. Swierkosz, J. L. Goodman, D. R. Scholl, and H. H. Balfour, Jr. 1990. Herpes simplex virus resistant to acyclovir. A study in a tertiary care center. Ann Intern Med 112:416-22.
18. Griffiths, A., S. H. Chen, B. C. Horsburgh, and D. M. Coen. 2003. Translational compensation of a frameshift mutation affecting herpes simplex virus thymidine kinase is sufficient to permit reactivation from latency. J Virol 77:4703-9.
19. Griffiths, A., and D. M. Coen. 2003. High-frequency phenotypic reversion and pathogenicity of an acyclovir-resistant herpes simplex virus mutant. J Virol 77:2282-6.
20. Harle, P., E. Lauret, P. M. Pitha, E. De Maeyer, and D. J. Carr. 2001. Expression of human and macaque type I IFN transgenes interferes with HSV-1 replication at the transcriptional and translational levels: IFN-beta is more potent than IFN-alpha 2. Virology 290:237-48.
21. Harle, P., B. Sainz, Jr., D. J. Carr, and W. P. Halford. 2002. The immediate-early protein, ICP0, is essential for the resistance of herpes simplex virus to interferon-alpha/beta. Virology 293:295-304.
22. Horsburgh, B. C., S. H. Chen, A. Hu, G. B. Mulamba, W. H. Burns, and D. M. Coen. 1998. Recurrent acyclovir-resistant herpes simplex in an immunocompromised patient: can strain differences compensate for loss of thymidine kinase in pathogenesis? J Infect Dis 178:618-25.
23. Katz, J. P., E. T. Bodin, and D. M. Coen. 1990. Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication-incompetent mutants. J Virol 64:4288-95.
24. Kimberlin, D. W., C. Y. Lin, R. F. Jacobs, D. A. Powell, L. Corey, W. C. Gruber, M. Rathore, J. S. Bradley, P. S. Diaz, M. Kumar, A. M. Arvin, K. Gutierrez, M. Shelton, L. B. Weiner, J. W. Sleasman, T. M. de Sierra, S. Weller, S. J. Soong, J. Kiell, F. D. Lakeman, and R. J. Whitley. 2001. Safety and efficacy of high-dose intravenous acyclovir in the management of neonatal herpes simplex virus infections. Pediatrics 108:230-8.
25. Kleinschmidt-DeMasters, B. K., and D. H. Gilden. 2001. The expanding spectrum of herpesvirus infections of the nervous system. Brain Pathol 11:440-51.
26. Kramer, M. F., and D. M. Coen. 1995. Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J Virol 69:1389-99.
27. Lekstrom-Himes, J. A., R. A. LeBlanc, L. Pesnicak, M. Godleski, and S. E. Straus. 2000. Gamma interferon impedes the establishment of herpes simplex virus type 1 latent infection but has no impact on its maintenance or reactivation in mice. J Virol 74:6680-3.
28. Neumann-Haefelin, D., R. Sundmacher, H. Frey, and W. Merk. 1985. Recombinant HuIFN-gamma prevents herpes simplex keratitis in African green monkeys: demonstration of synergism with recombinant HuIFN-alpha 2. Med Microbiol Immunol (Berl) 174:81-6.
29. Noisakran, S., I. L. Campbell, and D. J. Carr. 1999. Ectopic expression of DNA encoding IFN-alpha 1 in the cornea protects mice from herpes simplex virus type 1-induced encephalitis. J Immunol 162:4184-90.
30. Noisakran, S., and D. J. Carr. 2000. Plasmid DNA encoding IFN-alpha 1 antagonizes herpes simplex virus type 1 ocular infection through CD4+ and CD8+ T lymphocytes. J Immunol 164:6435-43.
31. Pelosi, E., K. A. Hicks, S. L. Sacks, and D. M. Coen. 1992. Heterogeneity of a herpes simplex virus clinical isolate exhibiting resistance to acyclovir and foscarnet. Adv Exp Med Biol 312:151-8.
32. Pelosi, E., F. Rozenberg, D. M. Coen, and K. L. Tyler. 1998. A herpes simplex virus DNA polymerase mutation that specifically attenuates neurovirulence in mice. Virology 252:364-72.
33. Sainz, B., Jr., and W. P. Halford. 2002. Alpha/Beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. J Virol 76:11541-50.
34. Schmutzhard, E. 2001. Viral infections of the CNS with special emphasis on herpes simplex infections. J Neurol 248:469-77.
35. Smith, P. M., R. M. Wolcott, R. Chervenak, and S. R. Jennings. 1994. Control of acute cutaneous herpes simplex virus infection: T cell-mediated viral clearance is dependent upon interferon-gamma (IFN-gamma). Virology 202:76-88.
36. Sorimachi, K., K. Akimoto, Y. Hattori, T. Ieiri, and A. Niwa. 1999. Secretion of TNF-alpha, IL-8 and nitric oxide by macrophages activated with polyanions, and involvement of interferon-gamma in the regulation of cytokine secretion. Cytokine 11:571-8.
37. Wentworth, B. B., and E. R. Alexander. 1971. Seroepidemiology of infectious due to members of the herpesvirus group. Am J Epidemiol 94:496-507.
38. Whitley, R. J., D. W. Kimberlin, and B. Roizman. 1998. Herpes simplex viruses. Clin Infect Dis 26:541-53; quiz 554-5.
39. Zerial, A., A. G. Hovanessian, S. Stefanos, K. Huygen, G. H. Werner, and E. Falcoff. 1982. Synergistic activities of type I (alpha, beta) and type II (gamma) murine interferons. Antiviral Res 2:227-39.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw