系統識別號 U0026-0812200911162907
論文名稱(中文) 運動對海馬迴中BDNF基因表現之影響
論文名稱(英文) Effects of Exercise on the Expression of Hippocampal Brain-Derived Neurotrophic Factor inRats
校院名稱 成功大學
系所名稱(中) 生理學研究所
系所名稱(英) Department of Physiology
學年度 92
學期 2
出版年 93
研究生(中文) 陳鏏仹
研究生(英文) Hui-Feng Chen
學號 s3691405
學位類別 碩士
語文別 中文
論文頁數 63頁
口試委員 指導教授-陳洵瑛
中文關鍵字 運動  海馬迴  BDNF基因表現 
英文關鍵字 exercise  hippocampus  BDNF expression 
中文摘要   運動有助於維持大腦的功能;例如延緩神經退化性疾病所導致的認知功能喪失,增強學習與記憶以及促進神經新生(neurogenesis),但是其間所透過的分子機轉,目前仍待進一步的釐清。過去的研究指出,大白鼠在經過自發性滾輪運動後,海馬迴中大腦衍生神經營養因子(BDNF)表現量顯著增加,且與運動量呈現正相關。BDNF在突觸可塑性(synaptic plasticity)中扮演一重要角色,並參與學習和記憶的形成過程。然而,自發性滾輪運動無法排除BDNF基因表現量的差異是否因先天上喜愛運動程度不同而異,且無法判別運動對於BDNF基因表現的影響是否為急性的效應,以及不同運動強度對BDNF基因表現的影響。為解決這些問題,我們使用另一種可以控制運動強度及時間的運動模式—跑步機運動。給予大白鼠不同的運動方式—四週中度運動訓練、急性中度運動或是急性劇烈運動,並在運動後觀察BDNF基因表現的情形。此外,也利用水迷宮(watermaze)來測量四週中度運動訓練後,老鼠的空間學習能力。結果顯示,(1)經過四週中度運動訓練後的老鼠在水迷宮有較佳的表現;(2)在最後一次運動後的二小時,BDNF mRNA與蛋白質表現量顯著的增加。而在運動訓練後二天,BDNF表現量則與控制組相同;(3)單一次與連續三次(一天一次)的急性中度運動後二小時,BDNF蛋白質的表現顯著增加,但並未改變mRNA的表現;(4)急性劇烈運動後二小時,BDNF mRNA與蛋白質表現均顯著增加。因此我們推論,運動對於BDNF表現的影響是屬於急性效應,且與運動的強度和期間有關。總而言之,四週運動訓練可以促進空間學習,可能透過不斷地刺激BDNF表現量增加,活化其下游訊息傳遞路徑,而促使學習與記憶能力的增強。

英文摘要   Exercise has beneficial effects on brain function, such as lowing risks of cognitive impairment, improving learning/memory capability, and promoting neurogenesis. However, its mechanisms need to be clarified. Previous studies demonstrated that voluntary wheel-running exercise increased levels of brain-derived neurotrophic factor (BDNF) expression in rat hippocampus. BDNF plays an important role in neuronal plasticity and is necessary for learning/memory formation. However, voluntary wheel-running exercise can not rule out the confounding effects of exercise on the BDNF expression, such as the genetic difference between good runners and poor runners, acute or chronic effects of exercise, or different intensity of exercise. We, therefore, performed this study to verify the underlying mechanisms of exercise effects on the brain function by a well-controlled experimental design. Treadmill exercise was used, because intensity and duration of this type of exercise could be controlled. Rats received different exercise protocols, i.e., 4 weeks of moderate exercise training, acute moderate exercise or acute severe exercise. BDNF expression was determined. In addition, the ability of spatial learning after 4 weeks of exercise training was evaluated by the watermaze test. Our results showed that (1) 4 weeks of exercise training reduced the escape latency in the watermaze test, indicating a better spatial learning performance; (2) BDNF mRNA and protein expression was increased 2 hours after the last run of chronic exercise. However, the expression of BDNF was unaltered if the expression was determined 2 days after training; (3) BDNF protein expression was increased 2 hours after a single bout and the last run of three repetitive of moderate, but the mRNA levels were not altered; (4) 2 hours after acute severe exercise significant increased BDNF mRNA and protein expression. These results indicate that the exercise-increased BDNF expression is an acute effect, and is intensity- and duration-dependent. In conclusion, 4 weeks of exercise training improves spatial learning, possibly via stimulating BDNF expression repetitively to activate its downstream signal transduction pathway.

論文目次 表、圖目錄 ------------------------------------- Ⅱ
附圖目錄 --------------------------------------- Ⅲ
中文摘要 --------------------------------------- 1
英文摘要 --------------------------------------- 2
導論 ------------------------------------------- 4
實驗材料與方法 --------------------------------- 10
實驗結果 --------------------------------------- 25
討論 ------------------------------------------- 29
結論 ------------------------------------------- 34
表 --------------------------------------------- 35
圖 --------------------------------------------- 36
附圖 ------------------------------------------- 48
參考文獻 --------------------------------------- 60
參考文獻 1. Anderson, B. J. et al. Exercise influences spatial learning in the radial arm maze. Physiol Behav 70, 425-9 (2000).
2. Castren, E. et al. The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. Neuroreport 4, 895-8 (1993).
3. Chodzko-Zajko, W. J. & Moore, K. A. Physical fitness and cognitive functioning in aging. Exerc Sport Sci Rev 22, 195-220 (1994).
4. Egan, M. F. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257-69 (2003).
5. Ernfors, P. & Bramham, C. R. The coupling of a trkB tyrosine residue to LTP. Trends Neurosci 26, 171-3 (2003).
6. Farmer, J. et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124, 71-9 (2004).
7. Finkbeiner, S. Calcium regulation of the brain-derived neurotrophic factor gene. Cell Mol Life Sci 57, 394-401 (2000).
8. Fordyce, D. E. & Farrar, R. P. Physical activity effects on hippocampal and parietal cortical cholinergic function and spatial learning in F344 rats. Behav Brain Res 43, 115-23 (1991).
9. Fordyce, D. E. & Wehner, J. M. Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice. Brain Res 619, 111-9 (1993).
10. French, S. J., Humby, T., Horner, C. H., Sofroniew, M. V. & Rattray, M. Hippocampal neurotrophin and trk receptor mRNA levels are altered by local administration of nicotine, carbachol and pilocarpine. Brain Res Mol Brain Res 67, 124-36 (1999).
11. Gall, C., Murray, K. & Isackson, P. J. Kainic acid-induced seizures stimulate increased expression of nerve growth factor mRNA in rat hippocampus. Brain Res Mol Brain Res 9, 113-23 (1991).
12. Isackson, P. J., Huntsman, M. M., Murray, K. D. & Gall, C. M. BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal patterns of induction distinct from NGF. Neuron 6, 937-48 (1991).
13. Johnson, R. A. & Mitchell, G. S. Exercise-induced changes in hippocampal brain-derived neurotrophic factor and neurotrophin-3: effects of rat strain. Brain Res 983, 108-14 (2003).
14. Karege, F. et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109, 143-8 (2002).
15. Kim, S. H. et al. Treadmill exercise increases cell proliferation without altering of apoptosis in dentate gyrus of Sprague-Dawley rats. Life Sci 71, 1331-40 (2002).
16. Korte, M. et al. Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc Natl Acad Sci U S A 93, 12547-52 (1996).
17. Laurin, D., Verreault, R., Lindsay, J., MacPherson, K. & Rockwood, K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 58, 498-504 (2001).
18. Lauterborn, J. C. et al. Differential effects of protein synthesis inhibition on the activity-dependent expression of BDNF transcripts: evidence for immediate-early gene responses from specific promoters. J Neurosci 16, 7428-36 (1996).
19. Leal-Cerro, A. et al. Mechanisms underlying the neuroendocrine response to physical exercise. J Endocrinol Invest 26, 879-85 (2003).
20. Lonart, G., Wang, J. & Johnson, K. M. Nitric oxide induces neurotransmitter release from hippocampal slices. Eur J Pharmacol 220, 271-2 (1992).
21. Marty, S., Berzaghi Mda, P. & Berninger, B. Neurotrophins and activity-dependent plasticity of cortical interneurons. Trends Neurosci 20, 198-202 (1997).
22. Mizuno, M., Yamada, K., He, J., Nakajima, A. & Nabeshima, T. Involvement of BDNF receptor TrkB in spatial memory formation. Learn Mem 10, 108-15 (2003).
23. Molteni, R., Ying, Z. & Gomez-Pinilla, F. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 16, 1107-16 (2002).
24. Mrsic, J., Zupan, G., Erakovic, V., Simonic, A. & Varljen, J. The influence of nimodipine and MK-801 on the brain free arachidonic acid level and the learning ability in hypoxia-exposed rats. Prog Neuropsychopharmacol Biol Psychiatry 21, 345-58 (1997).
25. Neeper, S. A., Gomez-Pinilla, F., Choi, J. & Cotman, C. Exercise and brain neurotrophins. Nature 373, 109 (1995).
26. Neeper, S. A., Gomez-Pinilla, F., Choi, J. & Cotman, C. W. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 726, 49-56 (1996).
27. Oliff, H. S., Berchtold, N. C., Isackson, P. & Cotman, C. W. Exercise-induced regulation of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res 61, 147-53 (1998).
28. Patterson, S. L., Grover, L. M., Schwartzkroin, P. A. & Bothwell, M. Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9, 1081-8 (1992).
29. Russo-Neustadt, A., Beard, R. C. & Cotman, C. W. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679-82 (1999).
30. Russo-Neustadt, A. A., Beard, R. C., Huang, Y. M. & Cotman, C. W. Physical activity and antidepressant treatment potentiate the expression of specific brain-derived neurotrophic factor transcripts in the rat hippocampus. Neuroscience 101, 305-12 (2000).
31. Schaaf, M. J., Hoetelmans, R. W., de Kloet, E. R. & Vreugdenhil, E. Corticosterone regulates expression of BDNF and trkB but not NT-3 and trkC mRNA in the rat hippocampus. J Neurosci Res 48, 334-41 (1997).
32. Schinder, A. F. & Poo, M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci 23, 639-45 (2000).
33. Silva, A. J., Kogan, J. H., Frankland, P. W. & Kida, S. CREB and memory. Annu Rev Neurosci 21, 127-48 (1998).
34. Smith, M. A., Makino, S., Kvetnansky, R. & Post, R. M. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15, 1768-77 (1995).
35. Tong, L., Shen, H., Perreau, V. M., Balazs, R. & Cotman, C. W. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis 8, 1046-56 (2001).
36. Tyler, W. J., Alonso, M., Bramham, C. R. & Pozzo-Miller, L. D. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem 9, 224-37 (2002).
37. Ueyama, T. et al. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 28, 103-10 (1997).
38. van Praag, H., Christie, B. R., Sejnowski, T. J. & Gage, F. H. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96, 13427-31 (1999).
39. van Praag, H., Kempermann, G. & Gage, F. H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2, 266-70 (1999).
40. Vanhoutte, P. & Bading, H. Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 13, 366-71 (2003).
41. Weltman, A., Wideman, L., Weltman, J. Y. & Veldhuis, J. D. Neuroendocrine control of GH release during acute aerobic exercise. J Endocrinol Invest 26, 843-50 (2003).
42. West, A. E. et al. Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A 98, 11024-31 (2001).
43. Xiong, H. et al. Mutual regulation between the intercellular messengers nitric oxide and brain-derived neurotrophic factor in rodent neocortical neurons. Eur J Neurosci 11, 1567-76 (1999).
44. Zafra, F., Hengerer, B., Leibrock, J., Thoenen, H. & Lindholm, D. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. Embo J 9, 3545-50 (1990).
45. Zetterstrom, T. S. et al. Manipulations of brain 5-HT levels affect gene expression for BDNF in rat brain. Neuropharmacology 38, 1063-73 (1999).

  • 同意授權校內瀏覽/列印電子全文服務,於2004-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2004-08-24起公開。

  • 如您有疑問,請聯絡圖書館