進階搜尋


 
系統識別號 U0026-0812200911151636
論文名稱(中文) 模版法製備中孔洞碳材料及其在電化學電容器上的應用
論文名稱(英文) Preparation of Mesoporous Carbon with Silica Template and Application of the Carbon in Electrochemical Capacitors
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 92
學期 2
出版年 93
研究生(中文) 劉信佑
研究生(英文) Hsin-Yu Liu
學號 n3691135
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-鄧熙聖
口試委員-溫添進
口試委員-陳東煌
口試委員-楊明長
口試委員-胡啟章
中文關鍵字 孔洞碳材  酚甲醛樹脂  電化學電容器  中孔洞 
英文關鍵字 Porous carbon  Phenol-formaldehyde resin  Electrochemical capacitor  mesopore 
學科別分類
中文摘要   本研究以酚甲醛樹脂及中孔洞二氧化碳,透過模版法製備中孔洞碳材料。經由樹脂的填充、碳化以及溶解模版的方式,很簡單的就可以獲得中孔洞的碳材。X射線粉末繞射反映出中孔碳材具有大範圍的孔洞序化結構,屬於I4132的空間群。TEM也清楚的觀察不同尺寸但排列規則的孔道。氮氣吸附分析則是顯示出中孔微孔共存的複雜孔道結構。
  以電化學循環伏安法在硫酸水溶液下測定碳材的表面可接觸性。在低電位掃瞄速率下,表面積類似的中孔碳材及微孔活性碳有相似的單位表面積電容量,約10μF/cm2。然而隨著電位掃瞄速率的增加,微孔碳電容量降低的幅度卻是比中孔碳來的大,這可歸因於中孔碳對電解質質傳阻力較小的緣故。藉由CO2再活化的步驟,將兩碳材的表面積提升至約2000 cm2/g左右。中孔碳的單位表面積電容量提升到13μF/cm2,而微孔活性碳則沒有增加。這證實了中孔的確提供了一個良好的管道讓電解質更深入到碳材的內部表面。將電容器組成二極式進行電化學探討,中孔碳電位掃瞄速率高達100 mV/s而仍然具有電容的行為。
  交流阻抗分析電極的電化學行為,並以等效電路進行套適。中孔碳與微孔碳在高頻應答行為,恰為電解質阻力電極本的並聯RC電路。而低頻的部分則由於孔洞阻力,應答出現非理想電容的行為。經交流阻抗分析得出中孔碳的孔洞質傳阻力為2.0Ω,比微孔碳的4.4Ω低。


英文摘要   Mesoporous carbon was prepared from resol-type phenol-formaldehyde resin using mesoporous silica as template. By filling the resin into the pores of the template, followed by resin carbonization and template dissolution, mesoporous carbon can be obtained in a unsophisticated way. Small-angle X-ray diffraction reflected the long-range ordering of the pores in the carbon. TEM and N2-adsorption analysis showed that the carbon contained mesopores of different sizes and a high proportion of micropores.
  Electrochemical cyclic voltammetry was conducted in H2SO4 to examine the surface accessibility of the carbon. In comparison with microporous activated carbon prepared, also from the resol resin, the double-layer capacitances per unit area for both carbons are similar (with a value of ca. 10 mF/cm2) at low potential sweep rates. However, the capacitance decline with the sweep rate was less significant for the mesoporous carbon, an indication that the mesoporous carbon has a smaller resistance for electrolyte migration. Upon gasification of the carbons to increase their surface area, the capacitance per unit area of the mesoporous carbon was significantly enhanced (to a value of ca. 13 mF/cm2) while that of the activated carbon was unchanged. It is suggested that the presence of mesopores has facilitated the electrolyte migration into carbon interior. Symmetric two-electrode capacitors fabricated using both carbons were tested with cyclic voltammetry. The mesoporous-carbon capacitor was shown to have a small resistance and still exhibited a capacitive behavior at relatively high potential sweep rates.
  The AC impedance analysis was also used to estimate the electrochemical behavior and the data were fitted with an equivalent circuit. The responses of mesoporous and microporous carbon electrodes at high frequencies correspond to electrolyte resistance in series with the parallel RC circuit of the electrode. At low frequencies, the impedance spectra exhibit nonideal capacitive behaviors due to the presence of pore resistance. The pore resistance of the mesporous carbon was estimated to be 2.0Ω, while 4.4Ωwas found for the microporous carbon.


論文目次 第一章 前言................................1
1-1 孔洞材料簡介...........................1
1-2 碳材簡介...............................2
1-3 模版方法 ..............................4
1-4 研究動機...............................5

第二章 理論說明............................8
2-1 多孔碳材的製造原理.....................8
2-1-1 碳化.................................8
2-1-2 活化.................................9
2-2 電容器................................10
2-2-1 電容原理............................11
2-2-2 二極式和三極式電容器................12
2-2-3 循環伏安法..........................13
2-2-4 定電流操作..........................13
2-3電雙層電容的基本觀念與結構.............13
2-3-1 電雙層原理..........................14
2-3-2 STERN電雙層模型.....................14
2-4 孔洞材料的分析方法....................15
2-4-1 氮氣吸附............................16
2-4-2 X-RAY粉末繞射分析...................20
2-4-3穿透式電子顯微鏡.....................21

第三章 實驗方法與設備.....................32
3-1 實驗用藥品與儀器......................32
3-2 實驗方法..............................33
3-2-1 孔洞材料的製備......................33
3-2-2 碳電容器的製備及電容行為探討........35

第四章 結果與討論.........................39
4-1 中孔洞材料之分析鑑定..................39
4-2-1 中孔洞分子篩MCM-48之孔洞結構分析....39
4-2-2 中孔洞碳材MC之孔洞結構分析..........39
4-2 中孔洞碳材料的電化學行為分析探討......41
4-2-1 三極式電化學系統之分析探討..........42
4-2-2 二極電容器之分析探討................44
4-2-3 交流阻抗分析........................45

第五章 結論...............................69

參考文獻..................................71

參考文獻 [1]C. K. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature, 359, 710 (1992)
[2]J. S.Beck, J.C.Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K. D. Schmitt, C. T-W Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, J. Am. Chem. Soc., 114, 10834 (1992).
[3]J. Y. Ying, C. P. Mehnert, M. S. Wong, “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials”, Angew. Chem. Int. Ed., 38, 56-77 (1999)
[4]V. Alfredsson, M. W. Anderson, “Structure of MCM-48 Revealed by Transmission Electron Microscopy”, Chem. Mater., 8, 1141 (1996)
[5]R. Ryoo, S. H. Joo, S. Jun, “Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation”, J. Phys. Chem. B, 103, 7743 (1999)
[6]A. H. Schoen, NASH Technical Note D-5541; NASH: Washington, DC, 1970.
[7]M. Kruk, M. Jaroniec, “Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates”, J. Phys. Chem. B, 104, 7960 (2000)
[8]S. B. Chakarvarti, J. Vetter, Nucl. Instrum. Meth. Phys. Recs., B62, 109 (1991)
[9]G. L. Hornyak, C. R. Martin, “Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit” , J. Phys. Chem., 101, 1548 (1997)
[10]M. Nishizawa, V. P. Menon, C. R. Martin, Science, 268, 700 (1995)
[11]B. B. Lakshmi, P. K. Dorhout, C. R. Martin, “Sol-Gel Template Synthesis of Semiconductor Nanostructures”, Chem. Mater., 9, 875 (1997)
[12]C. R. Martin, Adv. Mater., 3, 457(1991)
[13]L. S. Van Dyke, C. R. Martin, “Chemistry in Adsorbed Monolayers. 2. Thermal and Photochemical Grafting Reactions at the Polymer-Filler Interface”, Langmuir, 6, 1123 (1990)
[14]J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K-B Kim “Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitor”, Chem. Commun., 21, 2177 (1999).
[15]J. Lee, S. Yoon, S. M. Oh, C. H. Shin, T. Hyeon, “Development of a new mesoporous carbon using an HMS aluminosilicate template”, Adv. Mater., 12, 359 (2000)
[16]S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, “Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure”, J. Am. Chem. Soc., 122, 10712 (2000).
[17]R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec “Ordered mesoporous carbons”, Adv. Mater., 13, 677 (2001)
[18]S. H. Joo, S. Jun, Ryoo R., “Synthesis of ordered mesoporous carbon molecular sieves CMK-1”, Microporous and Mesoporous Materials. 44-45, 153 (2000)
[19]J-S Yu , S. B. Yoon, G. S. Chai “Ordered uniform porous carbon by carbonization of sugars”, Carbon, 39,1442 (2001).
[20]J-S Lee, S. H. Joo, R. Ryoo “Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters”, J. Am. Chem. Soc., 124,1156 (2002).
[21]L. A. Solovyov, A. N. Shmakov, V. I. Zaikovskii, S. H. Joo, R. Ryoo, “Detailed structure of the hexagonally packed mesostructured carbon material CMK-3”, Carbon, 40,2477 (2002).
[22]M. Kaneda, T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna, O. Terasaki, S. H. Joo, R. Ryoo, “Structural Study of Mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 byelectron crystallography”. J. Phys. Chem. B, 106, 1256 (2002).
[23]L. A. Solovyov, V. I. Zaikovskii, A. N. Shmakov, O.V. Belousov, R. Ryoo, “Framework characterization of mesostructured carbon CMK-1 by X-ray powder diffraction and electron microscopy”, J. Phys. Chem. B., 106, 12198 (2002)
[24]T. H. Brian, F. B. Christopher, S. Andreas, “Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids”, Science, 281, 538 (1998)
[25]R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, “Ordered Mesoporous Carbons”, Adv. Mater., 13, 677-81(2001)
[26]A. J. Bard, L. R. Faulkner, “Electrochemical Principles, Methods, and Applications”, Oxford University, Britain (1996)
[27]D. Qu, H. Shi, “Studies of Activated Carbons in Double-Layer Capacitors”, J. Power Sources 74, 99 (1998)
[28]C. H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-Vch, New York (1998).
[29]J. S. Mattson, Jr. H. B. Mark, “Activated Carbon: Surface Chemistry and Adsorption from Solution”, Wiley-Vch, New York (1998)
[30]S. Brunauer, “The Adsorption of Gases and Vapor. Vol. I, Physical Adsorption ”, Princeton University, Princeton, Now York (1943)
[31]S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc., 60, 309 (1938)
[32]M. M. Dubinin, L. V. Radushkevich, “Proc. Acad. Sci. USSR, 55, 331 (1947)
[33]E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc., 73, 373 (1951)
[34]W. Thomson, Phil. Mag. S., 42, 448 (1871)
[35]余樹楨, ”晶體之結構與性質”, 渤海堂文化公司印行, 台北(1989)
[36]J. N. Israelachvili, S, Marcelija, R.G. Horn, Q. Rev. Biophy, 13, 121, (1980)
[37]D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II., 77, 1264, (1981)
[38]J. Xu, Z. Luan, H. He, W. Zhou, L. Kevan, “A Reliable Synthesis of Cubic Mesoporous MCM-48 Molecular Sieve”, Chem. Mater., 10, 3690 (1998)
[39]N. A. Seaton, J. P. R. B. Walton and N. quirke , “A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements”, Carbon, 27, 853 (1989)
[40]M. Kruk, M. Jaroniec, Y. Bereznitski, “Adsorption Study of Porous Structure Development in Carbon Blacks”, J. Colloid. Interf. Sci., 182, 282 (1996)
[41]Z. Ryu, J. Zheng, M. Wang, “Porous structure of pan-based activated carbon fibers”, Carbon, 36, 427 (1998)
[42]H. Marsh, E-A Heintz, F. Rodríguez-Reinoso, “Introduction to carbon technologies”, University of Alicante, Alicante, Spain. 582 (1997)
[43]C-C Lin, H. Teng,“Influence of the formaldehyde-to-phenol ratio in resin synthesis on the production of activated carbons from phenol-formaldehyde resins”, Ind. Eng. Chem. Res., 41, 1986 (2002).
[44]S. Yoon, J. Lee, T. Hyeon, S. M. Oh “Electric double-layer capacitor performance of a new mesoporous carbon”, J. Electrochem. Soc., 147, 2507 (2000)
[45]R. de Levie, “On porous electrodes in electrolyte solutions”, Electrochim. Acta., 8, 751 (1963)
[46]L. G. Austin, E. G. Gagnon, “The triangular voltage sweep method for determining double-layer capacity of porous electrode”, J. Electrochem. Soc., 120, 251 (1973).
[47]B. E. Conway, “Electrochemical supercapacitors scientific fundamentals and technological application”, Kluwer Academic/Plenum Publishers, New York, 1999.
[48]C-T Hsieh, H. Teng, “Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions”, Carbon, 38, 863 (2000).
[49]M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshibak, H. Hara, M. S. Dresselhaus, “Capacitance and Pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes.” J. Electrochem. Soc., A910 (2001)
[50]H. Shi, “Activated carbons and double layer capacitance”, Electrochim Acta, 41, 1633 (1996).
[51]Y-R Lin, H. Teng, “A novel method for carbon modification with minute polyaniline deposition to enhance the capacitance of porous carbon electrodes”, Carbon, 41, 2865 (2003).
[52]B. E. Conway, “Electrochemical Supercapacitor”, Kluwer Academic/Plenum Publishers, New York (1999)
[53]X. Liu, T. Osaka, J. Electrochem. Soc., 143, 12 (1996)
[54]T. Momma, X. Liu, T. Osaka, Y. Ushio, Y. Sawada, “Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor”, J. Power Sources, 60,249-53 (1996)
[55]K. Kinoshita, “Carbon: Electrochemical and Physicochemical Properties”, John Wiley & Sons, New York (1988).
[56]Y-R Nian, H. Teng, “Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors”, J. Electroanal. Chem., 540, 119 (2003)
[57]R. Kötz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochim. acta., 45, 2483 (2000)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw