進階搜尋


 
系統識別號 U0026-0812200911134422
論文名稱(中文) 環境因子對室內建材VOCs及Formaldehyde逸散率之影響研究
論文名稱(英文) Study on the effects of Environmental factors to the VOCs and Formaldehyde Emission rates from Interior building materials
校院名稱 成功大學
系所名稱(中) 環境醫學研究所
系所名稱(英) Institute of Environmental and Occupational Health
學年度 92
學期 2
出版年 93
研究生(中文) 林君穎
研究生(英文) Chun-Ying Lin
電子信箱 ying-0418@yahoo.com.tw
學號 S7691101
學位類別 碩士
語文別 中文
論文頁數 152頁
口試委員 口試委員-蘇慧貞
指導教授-李俊璋
口試委員-江哲銘
口試委員-鄭福田
中文關鍵字 逸散速率  揮發性有機物  甲醛  建材  小型環控箱 
英文關鍵字 emission rate  Volatile organic compound  Formaldehyde  Environmental chamber  Building materials 
學科別分類
中文摘要   本研究目的在以小型環境控制箱依台灣地區四季氣候條件進行室內建材甲醛及VOCs逸散測試,並利用一階衰減模式建立衰減曲線,以了解建材逸散甲醛及VOCs在不同的環境條件之下,其濃度逸散的情形是否有所不同,進而進行室內環境甲醛及VOCs暴露風險評估。
  本研究甲醛部分主要量測合板、膠合地板,銘木地板及合成地毯於溫度為25℃、相對溼度50﹪,換氣率為0.5ACH時之逸散情形,結果發現,膠合地板甲醛逸散濃度相當高,其最高的濃度出現在第四個小時為1.08 ppm,逸散速率為1652.6 μg/m2*h,於48小時後其逸散濃度衰減至0.13ppm,逸散速率仍可達202.2 μg/m2*h。合板甲醛逸散測試結果發現逸散濃度亦相當高,其最高的濃度出現在第二個小時為0.90 ppm,逸散速率為1374.97 μg/m2*h,於50小時後其逸散濃度衰減至0.45 ppm,逸散速率仍可達686.15μg/m2*h。而銘木地板及合成地毯的甲醛逸散量則相對來的低。
  在本研究中溫度的改變對甲醛及揮發性有機物質的逸散行為有顯著的影響;甲醛部份,當溫度從15℃上升至25℃,合板甲醛總逸散量增加31﹪;VOCs部分,根據實驗結果顯示,溫度愈高,造成建材之總逸散濃度及總逸散因子增加。以合板而言,當相對溼度為50﹪時,溫度由15℃上升至25℃時,TVOC總逸散濃度增加39.73﹪,溫度每上升1℃逸散濃度增加5.62μg/m3,總逸散因子增加34.32﹪,溫度每上升1℃逸散率增加6.11μg/m2*h;由溫度25℃上升至35℃時,TVOC總逸散濃度增加43.13﹪,溫度每上升1℃逸散濃度增加3.60μg/m3,總逸散因子增加40.40﹪,溫度每上升1℃逸散率增加4.62μg/m2*h;以PVC地磚而言,當相對溼度為50﹪時,溫度由15℃上升至25℃時,TVOC總逸散濃度增加35.99﹪,溫度每上升1℃逸散濃度增加1.02μg/m3,總逸散因子增加29.62﹪,溫度每上升1℃逸散率增加0.65μg/m2*h;;由溫度25℃上升至35℃時,TVOC總逸散濃度增加90.21﹪,溫度每上升1℃逸散濃度增加9.50μg/m3,總逸散因子增加100.58﹪,溫度每上升1℃逸散率增加10.18μg/m2*h。
  本研究中,因採集甲醛之XAD-2(coated with 2-HMP ( 2(Hydroxymethyl) piperidine)採樣管易受高溫高溼之影響,因此,為確保採樣之準確性,本研究並不針對高溼環境進行甲醛採樣分析。在VOCs採樣方面,當相對溼度增加時,TVOC的逸散量有明顯上升的趨勢。以合板而言,當溫度為25℃時,相對溼度由50﹪上升至80﹪時,TVOC總逸散濃度增加49.03﹪,溼度每上升1﹪逸散濃度增加2.37μg/m3,總逸散因子增加49.52﹪,溼度每上升1﹪逸散率增加3.32μg/m2*h;以PVC地磚而言,當溫度為25℃時,相對溼度由50﹪上升至80﹪時,TVOC總逸散濃度增加23.77﹪,溼度每上升1﹪逸散濃度增加1.13μg/m3,總逸散因子增加28.21﹪,溼度每上升1﹪逸散率增加1.24μg/m2*h。
  風險值推估部分,合板(risk=7.37E-04)及膠合地板(risk=2.17E-04)的甲醛終生致癌風險值皆大於百萬分之一,而銘木地板與合成地毯的甲醛終生致癌風險值則小於百萬分之一。結果顯示合板及膠合地板是屬於高危害性的建材,應儘量避免使用,而台灣是屬於高溫高濕的氣候,若溫度和溼度一升高,人們所暴露到甲醛的致癌風險值(Risk)也就相對的提高,對室內空氣品質的影響及人體的危害性也就相對的增加了。另外,因於溫度為15℃、25℃、35℃,相對溼度為50﹪,換氣率皆為0.5 ACH下,PVC地磚與合板經過48小時的TVOC平衡濃度值相當的低,推估至實際空間濃度值更低,因此其各個化合物及多種物質同時暴露之HI值小於1,代表PVC地磚與合板之toluene、ethyl benzene、Xylene ( meta and para )、Xylene ( ortho )對人體的健康危害程度是輕微的。
  建議國內應加速建立本土排放資料,並透過制定法律的形式加以管制,以確保國人之健康及建材使用之安全性。
英文摘要   The objectives of this research are to measure the emission rates of formaldehyde and VOCs from the common building materials by using small-scale environmental chamber and to integrate the measurement results to assess the exposure risk of formaldehyde and VOCs in indoor environment.
  The results show that the emitted formaldehyde concentrations from wood-based panel and composite wood flooring were over the WHO recommended indoor air quality. For composite wood flooring, the highest emission concentration of formaldehyde was 1.08 ppm (emission rate of formaldehyde was 1652.6 g/ m2*h) at 4 hours after the test beginning. After 48 hours, it decreased to 130 ppb and still over the 100 ppb(emission rate of formaldehyde was 202.2 g/ m2*h). For special plywood, the highest emission concentration of formaldehyde was 0.90 ppm (emission rate of formaldehyde was 1374.97 g/ m2*h) at 2 hours after the test beginning. After 50 hours, it decreased to 450ppb and still over the 100 ppb(emission rate of formaldehyde was 686.15 g/ m2*h). For Mosaic parquet and carpets the highest emission concentration of formaldehyde was lower than 100 ppb at 4 hours after the test beginning. The results show that the emitted concentrations of formaldehyde of wood-based panel and composite wood flooring were over the WHO recommended indoor air quality. Using this type of wood-based panel and composite wood flooring to decorate the concentration of formaldehyde was too high.
  Temperature, relative humidity and air velocity are the major environmental factors which affect the VOCs and Formaldehyde emissions from building materials. In parts of Formaldehyde, it is increasing 31﹪emission concentrations of plywood when the temperature from 15 to 25℃. In parts of VOCs, the results showed that there are the higher emission concentrations of the selected VOCs when in higher temperature and humidity.
  In this study, because the XAD-2 (coated with 2-HMP ( 2(Hydroxymethyl) piperidine) can be easily influenced by the higher temperature and humidity, it could not sample the formaldehyde in this situation.
  Finally, the formaldehyde exposure risk all exceed to 1*10-6 when the composite wood flooring and special plywood were used as building materials in the indoor environment. In parts of VOCs, the HI for plywood and PVC are all under than 1.
  Until now, we don’t have an indoor air quality goal for formaldehyde. The result of our research will be basis of establishing the guideline of indoor environment quality and framing policies.
論文目次 目錄
摘要------------------------------------------------------II
Abstract--------------------------------------------------IV
目錄----------------------------------------------------VIII
圖目錄-----------------------------------------------------X
表目錄---------------------------------------------------XII
第一章 緒章 ---------------------------------------------1
1-1 研究背景------------------------------------------1
1-2 研究目的------------------------------------------3
第二章 文獻回顧------------------------------------------4
2-1 揮發性有機物定義----------------------------------4
2-2 甲醛之物化特性------------------------------------4
2-3 室內環境污染的來源或種類--------------------------4
2-4 室內建材揮發性有機物及甲醛的來源與種類------------5
2-5 揮發性有機物對人體的危害--------------------------8
2-6 甲醛對人體的危害----------------------------------8
2-7 國內外室內空氣品質標準及建議值--------------------9
2-8 建材甲醛及VOCs逸散情形---------------------------11
2-9 甲醛與VOCs逸散機制-------------------------------13
2-9-1 揮發性有機物質逸散機制---------------------------13
2-9-1-1 蒸發質量傳遞(The Evaporative Mass Transfer)------13
2-9-1-2 脫附作用(Desorption)---------------------------14
2-9-1-3 物質內的擴散作用(Diffusion Within the Material)--14
2-9-1-4 影響質傳的變數-----------------------------------14
2-9-1-5 環境因子之影響-----------------------------------15
2-10 揮發性有機物之逸散速率模式-----------------------16
2-11 相關標準測試方法---------------------------------18
2-12 健康風險評估-------------------------------------20
第三章 研究材料與方法-----------------------------------22
3-1 研究架構-----------------------------------------22
3-2 研究對象-----------------------------------------23
3-3 研究方法-----------------------------------------23
3-3-1 實驗設備-----------------------------------------23
3-3-2 採樣方法及步驟-----------------------------------26
第四章 結果與討論---------------------------------------33
4-1 問卷調查結果-------------------------------------33
4-2 建材製程調查結果---------------------------------33
4-3 台灣地區室內溫溼度調查現況-----------------------34
4-4 小型環控箱穩定性測試結果-------------------------35
4-4-1 溫溼度穩定度測試---------------------------------35
4-4-2 環控箱內氣流之混合程度測試-----------------------35
4-4-3 環控箱內空白測試---------------------------------36
4-5 建材甲醛逸散測試之品保品管-----------------------36
4-5-1 甲醛檢量線建立與製作-----------------------------36
4-5-2 準確度、精密度與方法偵測下限---------------------37
4-6 建材VOCs逸散測試之之品保品管---------------------39
4-6-1 VOCs檢量線建立-----------------------------------39
4-6-2 VOCs之準確度、精密度測試-------------------------40
4-7 建材甲醛逸散濃度測試結果-------------------------40
4-7-1 銘木地板、膠合地板、合板和合成地毯於溫度 25℃,溼度50%,換氣率0.5ACH之甲醛測試結果----------------40
4-7-2 溫度差異對甲醛濃度逸散之影響---------------------43
4-8 建材VOCs逸散濃度測試結果-------------------------45
4-9 溫度不同對合板及PVC地磚VOCs逸散濃度之影響--------53
4-10 溼度不同對合板及PVC地磚VOCs逸散濃度之影響--------53
4-11 溫溼度對合板及PVC地磚VOCs逸散濃度及逸散因子之影響---54
4-12 建材使用所致之健康風險評估-----------------------56
5-1 結論---------------------------------------------59
5-2 建議---------------------------------------------62
參考文獻--------------------------------------------------63
參考文獻 A.L. Hinwood, P.N. Di Marco, Evaluating hazardous air pollutants in Australia. Toxicology; 2002( 181): 361-366
Amal Elkilani, Walid Bouhamra, Estimation of optimum requirements for indoor air quality and energy consumption in some residences in Kuwait. Environment International; 2001( 27 ): 443–447
American Thracic Society : Environmental controls and lung disease. Am Rev Respir. Dis., 1990( 142 ):915.
Anderson, I., Lundquist, G.R., Molhave, L.,. Indoor air pollution due to chipboard used as a construction material. Atmospheric Environment 1975.( 9 ): 1121-1127.
ASTM D5116-97: Standard Guild for Small-Scale Environmental Chamber Determination for Organic Emission from indoor materials/ products. American Testing and Materials, West Conshohocken, PA, USA, 1997.
ASTM D6330: Standard Practice for Determination of Volatile Organic Compounds Emission from Wood-Based Panels using Small Environmental Chamber under defined test conditions. American Testing and Materials, West Conshohocken, PA, USA, 1999.
Berglund Birgitta, Ingegerd Johansson and Thomas Lindvall, Volatile Organic Compounds from Used Building Materials in a Simulated Chamber Study, Environmental International, 1989(15 ): 383-397.
Breysse, P.A., Formaldehyde levels and accompanying symptoms associated with individuals residing in over 1000 conventional and mobile homes in the state of Washington. Indoor Air ,1984(3): 403-408.
Broder I, et al. Comparison of health of occupations and characteristics of house among control homes and homes insulated with urea-formaldehyde foam insulation,I. Methodology Environ. 1988( 45 ):414-55.
Broder I, et al. Comparison of health of occupations and characteristics of house among control homes and homes insulated with urea-formaldehyde foam insulation,I. Methodology Environ. 1988( 45 ):414-55
Chang JCS, Guo ZS, Fortmann R, Lao HC, Characterization and reduction of formaldehyde emissions from a low-VOC latex paint. Indoor air-international journal of indoor air quality and climate; 2002, (1): 10-16
Cheong KW, Chong KY, Development and application of an indoor air quality audit to an air-conditioned building in Singapore. Building and Environment; 2001(36): 181-188
Ekbreg LE, "Volatile organic compounds in office buildings," Atmos. Environ.;1994 (22): 3571-3575.
Ellenhorn, M.J. and D.G. Barceloux. Medical Toxicology - Diagnosis and Treatment of Human Poisoning. New York, NY: Elsevier Science Publishing Co., Inc. 1988(22):962.
Fariborz Haghighat, Ying Zhang, Modelling of emission of volatile organic compounds from building materials-estimation of gas-phase mass transfer coefficient. Building and Environment; 1999(34): 377-389
First MW, Constituents of side stream and mainstream tobacco and markers to quantify exposure to them, In : Gammage RB, Kaye SV, eds., Indoor air and Human Health, Chelsea, MI : Lewis Publishers. 1985(12): 195-203.
First MW, Constituents of siderstream and mainstream tobacco and markers to quantify exposure to them, In : Gammage RB, Kaye SV, eds., Indoor air and Human Health, Chelsea, MI : Lewis Publishers. 1985(17):195-203
Geiger H, Kleffmann J, Wiesen P, Smog chamber studies on the influence of diesel exhaust on photosmog formation. Atmospheric Environment; 2002, 36 (11): 1737-1747
Grant, W.M. Toxicology of the Eye. 3rd ed. Springfield, IL: Charles C. Thomas Publisher, 1986(33):927-937
Guerin MR, Higgins CE, and Jenkins RA. Measuring environmental emissions from tobacco combustion : side stream cigarette smoke literature review. Atmospheric Environment. 1987(21):291-97.
Guo H, Murray F, Modelling of emissions of total volatile organic compounds in an Australian house. Indoor and Built Environment; 2000(34): 171-181
Guo ZH, Review of indoor emission source models. Part 1. Overview. Environmental Pollution; 2002, 120 (3): 533-549
H. N. Knudsen, U. D. Kjaer, P. A. Nielsen, P. Wolkoff, Sensory and Chemical Characterization of VOC Emission from Building products: Impact of Concentration and Air Velocity, Atmospheric Environment, 1999(33):1217-1230.
Hodgson M. Levin H. Wolkoff P., Volatile organic compounds and indoor air., Journal of Allergy & Clinical Immunology. ,1994. (94): 296-303,.
IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man. Geneva: World Health Organization, International Agency for Research on Cancer,1972-PRESENT. (Multivolume work). 1982(29):361-367
Guerin MR. Chemical composition of cigarette smoke, Banbury Report. A Safe Cigarette, Cold Spring Harbor Laboratory. 1980(3): 191-204.
Janes A. P. Indoor air quality and health, Atmispheric Environment 1999(33):4535-4564.
Jorgensen RB, Dokka TH, Bjorseth O, Introduction of a sink-diffusion model to describe the interaction between volatile organic compounds (VOCs) and material surfaces. Indoor air-international journal of indoor air quality and climate; 2000, 10 (1): 27-38
K. T. Morgan, X. Z. Jiang, T. B., Starr, W. D. Kerns, More Precise Location of Nasal Tumors Associated with Chronic Exposure of F-344 rats to formaldehyde gas. Toxicol. Appl. Pharmacol. 1986(82):264-271.
K.W. Tham ., S.C. Sekhar, David Cheong, Indoor air quality comparison of two air-conditioned zones served by the same air-handling unit. Building and Environment; 2002(37): 947-960
L. E. Sparks, Z. Guo, J. C. Chang, B.A. Tichenor, Volatile Organic Compound Emission form Latex Paint- Part 1. Chamber Experiments and Source Model Development, Indoor Air, 1999(9): 10-17..
L. Fang, G. Clausen & P. O. Fanger. Impact of temperature and humidity on chemical and sensory emissions from building materials. Indoor Air. 1999(9): 193-201.
Lance Wallace, Indoor particles : A review. J. of AWMA. 1996(46):98-126.
Lee SC, Lam S, Fai HK, Characterization of VOCs, ozone, and PM10 emissions from office equipment in an environmental chamber. Building and Environment; 2001, 36 (7): 837-842
Lee SC, Li WM, Ao CH, Investigation of indoor air quality at residential homes in Hong Kong - case study. Atmospheric Environment; 2002, 36 (2): 225-237
Leovic KW, Sheldon LS, Whitaker DA, Hetes RG, Calcagin JA, Baskir JN. Measurement of indoor air emissions from dry-process photocopy machines. J. Air & Waste Manage Assoc. 1996(46): 821-29.
Levin H, et al. Building materials and indoor air quality. OCCUPATIONAL MEDICINE. 1989(4):667-93.
Massimiliano Possanzini, Vincenzo Di Palo, Angelo Cecinato, Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air. Atmospheric Environment; 2002(36): 3195-3201
Mogen, et al. Health Evaluation of Volatile Organic Compound (VOC) Emissions from Wood and Wood-Based Materials. Institute of Environmental and Occupational Medicine; 2001, 56(5): 419-432
Molhave L, "Indoor air pollution due to organic gases and vapours of solvents in building materials," Environ. Int.,1982,(8): 117-27.
Molhave L, Organic compounds as indicators of air pollution. Indoor Air; 2003(13): 12-19
Nielson, K.K., Rogers, V.C., Holt, R.B., Pugh, T.D., Grondzik,W.A., de Meijer, R.J.,. Radon penetration of concrete slab cracks, joints, pipe penetrations, and sealants. Health Physics ,1997,73 (4):668-678.
Nistchke K, Burek J, Bell T, Kociba R, Rampy L, McKenna M. Methylene chloride: a 2-year inhalation toxicity and oncogenicity study in rats. Fundam Appl. Toxicol. 1988;(11):48-59.
Orlando JJ, Tyndall GS, Ceazan N, Rate coefficients and product yields from reaction of OH with 1-penten-3-ol, (Z)-2-penten-1-ol, and allyl alcohol (2-propen-1-ol). Journal of Physical Chemistry A; 2001, 105 (14): 3564-3569
Otto DA, Hundnell HK, House DE, Molhave L, Counts W. Exposure of humans to a volatile organic mixture. I. Behavioral assessment. Arch. Environ. Health. 1992; (47): 23-30.
P.K. SrivastavaU, G.G. Pandit, S. Sharma, A.M. Mohan Rao, Volatile organic compounds in indoor environments in Mumbai, India. The Science of the Total Environment; 2000(255): 161-168
Potter, P.C., Juritz, J., Little, F., McCaldin, M., Dowdle, E.B.,. Clustering of fungal-allergen specific IgE antibody responses in allergic subjects. Annals of Allergy ,1991, 66 (2):149-153.
Przyk E, Zabiegala B, Gorecki T, Namiesnik J, Methods for the control of indoor air quality. CHEMIA ANALITYCZNA; 2000, 45 (5): 631-643
Quackenboss JJ, Kanarek MS, Spengler JD, Letz R. Personal monitoring for nitrogen dioxide exposure: methodological considerations for a community study. Environ Int 1982(8):249-58.
R. A. Woutersen , V. J. Feron, Localization of Nasal Tumors in Rats Exposed to Acetaldehyde or Formaldehyde, in: V. J. Feron, M.C. Bosland (Eds.), Nasal Carcinogensis in Rodents: Relevance to Human Health Risk, Pudoc Publishing, Veldhoven, 1989(3):70-75.
Renata Wiglusz ., Elzbieta Sitko, Grazyna Nikel, Irena Jarnuszkiewicz, Barbara Igielska, The effect of temperature on the emission of formaldehyde and volatile organic compounds (VOCs) from laminate flooring- case study. Building and Environment; 2002(37): 41–44
Rikke Bramming Jorgensen, Sorption Behaviour of Volatile Organic Compounds on Materials Surfaces- The Influence of Combinations of Compounds and Materials Compared to Sorption of Single Compunds on Single Materials, Environmental International, 1999(25):17-27.
Robinson J., Nelson, W. C., National Human Activity Pattern Suvey Data Base. United States Environmental Protection Agency, Research Triangle Park,
Roman Meininghaus, Amin Kouniali, Corinne Mandin, Andre Cicolella, Risk assessment of sensory irritants in indoor air-a case study in a French school. Environment International; 2003(28): 553– 557
S. K. Brown, Chamber Assessment of Formaldehyde and VOC Emissions from Wood-Based Panels. Indoor Air .,1999(9):209-215.
Schaeffer VH, Bhoosham B, Chen SB, Sonenthal JS, Hodgson AT. Characterization of volatile organic chemical emissions from carpet cushions. J. Air & Waste Manage Assoc. 1996(46):813-820.
Seifert, B., and Schmahl, H. , Quantification of sorption effects for selected organic substances present in indoor air, Proceeding of indoor Air 87, Berlin, Institute of Water, Soil and Air Hygiene, 1989(13):252-256
Seifert, B., Mailahn, W., Schultz, C. and Ullrich, D.; Seasonal variation of concentration of Colatile Organic Compounds in Selected German Homes, Environment international, 1989(15):397-408.
Sempeles J, Andino JM, Laboratory studies of the OH-initiated photooxidation of Di-n-propyl ether. International Journal of Chemical Kinetics; 2000, 32 (11): 703-711
Shun-Cheng Lee, Hai Guo, Wai-Ming Li, Lo-Yin Chan, Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. Atmospheric Environment; 2002(36): 1929–1940
Shun-Cheng Lee, Ngai-Hong Kwok, Hai Guo, Wing-Tat Hung, The effect of wet film thinkness on VOC emissions from a finishing varnish. The Science of the Total Environment; 2003(302): 75-84
Sin, Della W.M., Wong, Yiu-Chung, Louie, Peter K.K., Trends of ambient carbonyl compounds in the urban environment of Hong Kong. Atmospheric Environment; 2001, 35(34): 5961-5969
Sterling DA, "Volatile organic compounds in indoor air: an overview of sources, concentrations and health effects," In: Gammage RB, Kaye SV, eds. Indoor air and human health. Chelsea, MI: Lewis Publishers, 1985(11): 387-402
T. M. Monticello, J. A. Swenberg, E. A. Gross, J. R. Leininger, J. S. Kimbell, S. Seilkop, T.B. Starr, J. E. Gibson, K. T. Morgan, Correlation of Regional and nonlinear formaldehyde-indeced Nasal Cancer with Proliferating Population of Cells, Cancer Res. 1996(56), 1012-1022.
Tobias HJ, Ziemann PJ, Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O-3 in the presence of alcohols and carboxylic acids. Environmental Science & Technology; 2000, 34 (11): 2105-2115
Virgil J. Knonopinski , Seasonal formaldehyde concentrations in an office building, Am. Ind. Assoc. J., 1985, 46(2):65-68.
Wargocki P, Wyon DP, Sundell J, Clausen G, Fanger PO, The effects of outdoor air supply rate in an office on perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity. Indoor air-international journal of indoor air quality and climate; 2000, 10 (4): 222-236
Weschler CJ, Shields HC, Rainer D, "Concentrations of volatile organic compounds at a building with health and comfort complaints," Am. Ind. Hyg. Assoc. J. , 1990, 51 (5): 261-268.
Wold Health Organization., “Air Quality Guidelines for Europe”, WHO Regional Publications, European Series. , 1988, No.31.
Wolkoff, P., Clausen, P., Nielsen, P. A., A new approach for indoor climate labeling of building materials- emission testing, modeling, and comfort evaluation. Atmospheric Environment .,1996(30):2670-2689.
Wolkoff, P., Clausen, P., Nielsen, P. A., The Danish Twin Apartment Study, Part 1: Formaldehyde and Long-Term VOC Measurements, Indoor Air, 1991(1): 478-490.
Yang X, Chen Q, A coupled airflow and source/sink model for simulating indoor VOC exposures. Indoor air-international journal of indoor air quality and climate; 2001, 11(4): 257-269
Yang X, Chen Q, Zeng J, Zhang JS, Shaw CY, A mass transfer model for simulating volatile organic compound emissions from 'wet' coating materials applied to absorptive substrates. International Journal of Heat and Mass Transfer; 2001, 44 (9): 1803-1815
Yang X, Chen Q, Zhang JS, An Y, Zeng J, Shaw CY, A mass transfer model for simulating VOC sorption on building materials. Atmospheric Environment; 2001, 35 (7): 1291-1299
Zabiegala B, Przyk E, Przyjazny A, Namiesnik J, Evaluation of indoor air quality on the basis of measurements of VOC concentrations. CHEMIA ANALITYCZNA; 2000, 45 (1): 11-26
Zhishi Guo, John C.S. Chang, Leslie E. Sparks, Roy C. Fortmann, Estimation of the rate of VOC emissions from solvent-based indoor coating materials based on product formulation. Atmospheric Environment; 1999(33): 1205–1215
Zhishi Guo, Review of indoor emission source models. Part 2. Parameter estimation. Environmental Pollution; 2002(120): 551–564
張志成,”建築室內逸散物質檢測分析研究(一)建築物室內環境揮發性有機物檢測實驗室建置”,內政部建築研究所,1999。
江哲銘等,”建築室內環境保健控制綜合指標之研究”,內政部建築研究所,1999。
蘇慧貞,吳佩芝,”家戶環境中過敏源及細菌內毒素暴露變化與相關生物指標之研究”, 成大環醫所,1999。
何明錦、江哲銘,”建築室內建材揮發性有機化合物衰減總表之研究”,內政部建築研究所,2000。
李慧梅,”室內揮發性有機物污染源排放因子之研究”,2000
蘇慧貞、江哲銘、李俊璋, “室內空氣品質標準於不同建築物之試行評估級管制策略研究”,2000.
江哲銘、李俊璋,”室內建材有機逸散物質檢測標準試驗方法及程序之研究”,內政部建築研究所,2001。
李俊璋、林冠謂,”室內建材揮發性有機物質與甲醛之檢測標準分析方法之研究”,成大環醫所,2002。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw