進階搜尋


 
系統識別號 U0026-0812200911132368
論文名稱(中文) 研究三氯乙烯電化學行為 與其微加工感測器之製備
論文名稱(英文) On the electrochemical behaviors and the microfabricated sensor of trichloroethylene
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 92
學期 2
出版年 93
研究生(中文) 陳敏華
研究生(英文) Min-Hua Chen
電子信箱 chenminhua@ms2.url.com.tw
學號 n3890113
學位類別 博士
語文別 中文
論文頁數 262頁
口試委員 口試委員-何國川
口試委員-杜景順
口試委員-許梅娟
指導教授-周澤川
口試委員-萬其超
口試委員-黃炳照
口試委員-張宗仁
口試委員-吳建國
口試委員-劉炯權
中文關鍵字 感測器  電化學  三氯乙烯  微加工 
英文關鍵字 sensor  microfabricated  trichloroethylene  electrochemistry 
學科別分類
中文摘要   三氯乙烯是工業上一種常用的有機溶劑及去污劑,但是它亦是土壤及地下水中污染的來源。根據醫學的研究指出,三氯乙烯是一種具有致癌性的物質。因此,如何在廢水中監控三氯乙烯濃度是項很重要的指標。本研究中,先探討三氯乙烯在鉛及電鍍鉛電極的電化學還原反應行為,再依據所得之結果設計具有感測性能佳、靈敏度高、應答時間快、重覆使用性次數多及穩定性長的三氯乙烯感測器。
  在有機電解液系統中,以電聚合的方法可以合成含有共軛性質的聚氯乙炔,並在紫外光-可見光譜有一最大吸收峰在波長315nm,核磁共振光譜及氣相層析圖譜顯示電解後主要產物為氯乙炔,差式掃描熱量分析法得到相變化溫度在325 ˚C。
  以鉛片為工作電極感測三氯乙烯,工作電極最佳的製備條件為:1.0 M HNO3水溶液前處理30分鐘;三氯乙烯最佳感測條件為:有機電解質濃度0.025 M TBAT,感測電位-2.10 V (vs. Ag/Ag+ with 0.1 M TBAP in AN),攪拌速率250 rpm。在此條件下,三氯乙烯感測器之靈敏度為7.15 μA/cm2-ppm,應答時間10秒,且電極壽命至少四個月。另外,在此研究偵測範圍內,即三氯乙烯濃度為50至250 ppm間,可以得到三氯乙烯濃度(CL)與其感測應答電流(id)之關係為id=7.15CL,及在質傳控制下的反應速率常數為4.86810-3 (cm-s)-1。
  以電鍍鉛修飾碳片為工作電極感測三氯乙烯,工作電極最佳的製備條件為:電鍍電流密度10 mA/cm2,電鍍溫度25 ˚C及電鍍時間2小時;三氯乙烯最佳感測條件為:有機電解質濃度0.01 M TBAT,感測電位-2.10 V (vs. Ag/Ag+ with 0.1 M TBAP in AN),攪拌速率100 rpm。在此條件下,三氯乙烯感測器之靈敏度為7.06 μA/cm2-ppm,應答時間15秒,且電極壽命至少二個月。另外,在此研究偵測範圍內,即三氯乙烯濃度為100至700 ppm間,可以得到三氯乙烯濃度(CL)與其感測應答電流(id)之關係為id=7.06CL,及在質傳控制下的反應速率常數為4.8110-3 (cm-s)-1。
  以電鍍鉛修飾鉛箔為工作電極感測三氯乙烯,工作電極最佳的製備條件為:0.1 M HNO3水溶液前處理60分鐘,電鍍電流密度20 mA/cm2,電鍍溫度30 ˚C及電鍍時間2小時;三氯乙烯最佳感測條件為:有機電解質濃度0.01 M TBAT,感測電位-2.10 V (vs. Ag/Ag+ with 0.1 M TBAP in AN),攪拌速率155 rpm。在此條件下,三氯乙烯感測器之靈敏度為1.06 μA/cm2-ppm,應答時間20秒,且電極壽命至少二個月。另外,在此研究偵測範圍內,即三氯乙烯濃度為50至700 ppm間,可以得到三氯乙烯濃度(CL)與其感測應答電流(id)之關係為id=1.06CL,及在質傳控制下的反應速率常數為7.21710-4 (cm-s)-1。
  以電鍍鉛修飾Pt-Ti薄膜為工作電極感測三氯乙烯,Pt-Ti薄膜基材的濺鍍條件為:310-3 Torr的濺鍍壓力,20分鐘的濺鍍時間及30 Watt的濺鍍功率;工作電極最佳的製備條件為:電鍍電流密度18.75 mA/cm2,電鍍時間2小時在室溫下;三氯乙烯最佳感測條件為:0.1 M TBAT有機電解質溶液,感測電位-2.10 V (vs. Ag/Ag+ with 0.1 M TBAP in AN),攪拌速率為250 rpm。此條件下,三氯乙烯感測器之靈敏度為2.86 μA/cm2-ppm,應答時間為15秒,重覆使用性至少15次及電極壽命至少六個月。另外,在此研究偵測範圍內,即三氯乙烯濃度為100至700 ppm間,可以得到三氯乙烯濃度(CL)與其感測應答電流(id)之關係為id=2.86CL,及在質傳控制下的反應速率常數為2.43410-3 (cm-s)-1。
  由以上所有的實驗結果得知,當使用電鍍鉛修飾Pt-Ti薄膜電極於感測三氯乙烯時,皆具有良好的感測性能,不論在靈敏度、應答時間、電極重覆使用性與電極穩定度上均可得到良好的感測結果。除此之外,應用此電極對三氯乙烯感測器的設計是最具實用性的,因為它可以配合微加工的技術將整個感測器微小化。因此,在未來商業化產品的應用中,以電鍍鉛修飾Pt-Ti薄膜電極是最具有發展潛力。
英文摘要   Trichloroethylene (TCE) is a widely used organic solvent and degreasing agent in industry. However, the contamination of soil and groundwater with persistent organic pollutants is a matter of increasing concern such as TCE. There are many investigations implying the TCE is a carcinogenic material which causes serious health problems. Furthermore, how to control the concentration of TCE is a very important goal. In this study, the electrochemical reduction behaviors of TCE by using a Pb and an electrodeposited Pb modified electrodes in organic electrolyte were developed. Based on the data, a new amperometric TCE sensor can be designed with high performance, good sensitivity, short response time, nice reusability and long stability to monitor the concentration of TCE.
  A novel conjugated polyacetylene chloride containing a chloric side chain which is synthesized from the TCE with an organic electrolyte by electropolymerization method. UV-Vis spectrum of the monomer shows an absorption maximum (λmax) around 315 nm due to the π-conjugation which exists in the monomer. The 1H NMR and GC-Mass spectra show that the main product is an acetylene chloride. Additionally, the phase transition temperature of polyacetylene chloride at 325 ˚C was examined by differential scanning calorimeter (DSC).
  An amperometric TCE sensor by using a Pb electrode in an organic electrolyte was developed. The optimal pretreating and sensing conditions were found to be 1.0 M pretreatment HNO3 concentration, 30 min pretreatment time, -2.10 V (vs. Ag/Ag+ with 0.1 M tetrabutylammonium perchlorate (TBAP) in AN) sensing potential, 250 rpm agitation rate in a 0.025 M tetrabutylammonium tetrafluoroborate (TBAT) organic electrolyte. The response time and the sensitivity were 10 s and 7.15 μA/cm2-ppm, respectively. Additionally, at least 4 months stability for the prepared working electrode was also obtained. The correlation of the sensing response current, id, and TCE concentration, CL, is id=7.15CL in the range from 50 to 250 ppm TCE. The rate constant of (TCE) at mass-transfer control was found to be 4.86810-3 (cm-s)-1.
  The TCE sensor by using an electrodeposited a Pb modified graphite electrode in an organic electrolyte was studied. The best electrodeposition conditions of the prepared working electrode were 20 mA/cm2 electrodeposition current density, 25 ˚C electrodeposition temperature and 2 hrs. Additionally, the optimal sensing conditions were -2.10 V sensing potential (vs. Ag/Ag+ with 0.1 M tetrabutylammonium perchlorate (TBAP) in acetonitrile (AN) solution), 100 rpm agitation rate, and at 25 ˚C with 0.01 M tetrabutylammonium tetrafluoroborate (TBAT) electrolyte concentration in AN solution were obtained in this system. Under the optimal sensing conditions, the results indicated that the sensitivity and response time were 7.06 μA/cm2-ppm and 15 s (90% response time), respectively.      Furthermore, the stability is at least 60 days for prepared electrode. Additionally, the correlation of sensing response current, id, and trichloroethylene (TCE) concentration, CL, is id=7.06CL in the range from 100 to 700 ppm TCE. The rate constant of (TCE) at mass-transfer control was found to be 4.8110-3 (cm-s)-1.
  Electrochemical detection of trichloroethylene with an electrodeposited Pb modified was designed. The optimal conditions for the preparation of the electrodeposited Pb modified electrode were obtained which 0.1 M pretreatment HNO3 concentration, 60 min pretreatment time, 20 mA/cm2 electrodeposition current density, 30 ˚C electrodeposition temperature and 2 hrs. The optimal sensing conditions such as -2.10 V sensing potential (vs. Ag/Ag+ with 0.1 M tetrabutylammonium perchlorate (TBAP) in acetonitrile (AN) solution), 155 rpm agitation rate, and at room temperature with 0.01 M tetrabutylammonium tetrafluoroborate (TBAT) electrolyte concentration in AN solution were obtained in this system. Under the optimal sensing conditions, the results indicated that the sensitivity and the response time were 1.06 μA/cm2-ppm and 20 s (90% response time), respectively. Furthermore, the stability is at least 60 days for prepared electrode. Additionally, the correlation of sensing response current, id, and trichloroethylene (TCE) concentration, CL, is id=1.06CL in the range from 50 to 700 ppm TCE. The rate constant of (TCE) at mass-transfer control was found to be 7.21710-4 (cm-s)-1.
  A novel electrochemical TCE sensor using an electrodeposited Pb modified Pt-Ti thin film electrode was successfully developed and well characterized. The prepared conditions of the electrodeposited Pt-Ti thin film working electrode were obtained as 310-3 torr sputtering pressure, 20 min sputtering deposition time ,30 watts sputtering power, 18.75 mA/cm2 and 2 hrs under room temperature. Optimal sensing conditions were found to be -2.10 V (vs. Ag/Ag+ with 0.1 M tetrabutylammonium perchlorate (TBAP) in acetonitrile (AN) solution) sensing potential, 250 rpm agitation rate. At room temperature, the sensitivity and response time was 2.86μA/cm2-ppm and 15 s (90% response time), respectively. Furthermore, the prepared electrode had over 15 cycles of reusability, and the stability is least 180 days. Additionally, the correlation of sensing response current, id, and trichloroethylene (TCE) concentration, CL, is id=2.86CL in the range from 100 to 700 ppm TCE. The rate constant of (TCE) at mass-transfer control was found to be 2.43410-3 (cm-s)-1.
  In this study, the framework of the TCE sensor with an electrodeposited Pb modified Pt-Ti thin film electrode can be obtained excellent sensing performances such as the sensitivity, the response time, the reusability and the stability. Additionally, the electrodeposited Pb modified Pt-Ti thin film electrode can be combined with microfabrication technique for the design of TCE sensor. Therefore, the electrochemical TCE sensor using an electrodeposited Pb modified Pt-Ti thin film electrode in TBAT organic electrolyte showed promising features for commercial application.
論文目次 中文摘要 I
Abstract IV
誌謝 VIII
目錄 IX
表目錄 XV
圖目錄 XVI
符號說明 XXI
第一章 緒論 1
1.1前言 1
1.2三氯乙烯分析方法 2
1.3三氯乙烯感測器偵測方式 3
1.4有機化合物的氧化還原反應 6
1.5氯乙炔與共軛高分子簡介 7
1.5.1氯乙炔簡介 7
1.5.2共軛高分子簡介 7
1.5.2.1聚乙炔簡介 12
1.6電流式感測器 13
1.7研究動機與目的 13
1.7.1研究動機 13
1.7.2研究目的 14
第二章 理論分析 15
2.1鹵化物的電化學還原反應機構 15
2.2三氯乙烯電化學理論分析 16
2.2.1反應控制模式 16
2.2.2質傳控制模式 21
2.3鉛的電化學特性 23
2.4電鍍鉛的特性 24
2.4.1電鍍鉛之鍍液成份 24
2.5有機助電解質的選擇 24
第三章 實驗 27
3.1藥品及儀器設備 27
3.1.1藥品 27
3.1.2儀器設備 28
3.2實驗步驟 29
3.2.1三氯乙烯電解合成裝置及分析方法 29
3.2.2三氯乙烯感測器的裝置 32
3.2.3電鍍鉛修飾碳片電極的製備 33
3.2.4電鍍鉛修飾鉛箔電極 33
3.2.4.1基材的前處理 33
3.2.4.2電鍍鉛修飾鉛箔電極的製備 33
3.2.5微小化電極系統 34
3.2.5.1 Pt-Ti與Pb-Pt-Ti薄膜電極的製備 34
3.2.5.2電鍍鉛修飾薄膜電極的製備 35
3.2.6三氯乙烯的感測分析 36
3.2.7製備工作電極表面特性分析 38
第四章 三氯乙烯電化學反應行為之研究 39
4.1前言 39
4.2結果與討論 39
4.2.1三氯乙烯電化學反應 39
4.2.1.1線性伏安法求取三氯乙烯之還原反應 39
4.2.1.2助電解質種類對陰極電流的影響 45
4.2.1.3不同陰極電位對反應級數的影響 46
4.2.2氯乙炔特性分析 49
4.2.2.1氯乙炔pH值測定 49
4.2.2.2氯乙炔光譜分析 51
4.2.2.3氯乙炔之氣相-質譜分析 52
4.2.3聚氯乙炔特性分析 55
4.2.3.1聚氯乙炔之表面分析 55
4.2.3.2聚氯乙炔之熱分析 55
4.2.3.3聚氯乙炔之光譜分析 56
4.2.3反應機構的探討 62
4.3結論 62
第五章 應用鉛片電極感測三氯乙烯之研究 63
5.1前言 63
5.2結果與討論 63
5.2.1電極表面之特性分析 63
5.2.2極限電流的測定 64
5.2.3三氯乙烯感測應答測試與校正曲線 67
5.2.4感測攪拌速率對感測靈敏度的影響 67
5.2.5感測TBAT有機電解質濃度對感測靈敏度的影響 71
5.2.6製備電極之鉛片前處理硝酸濃度對感測靈敏度的影響 73
5.2.7製備電極之鉛片前處理時間對感測靈敏度的影響 73
5.2.8工作電極穩定性測試 80
5.2.9理論與實驗結果比較 80
5.3結論 84
第六章 應用電鍍鉛修飾碳片電極感測三氯乙烯之研究 85
6.1前言 85
6.2結果與討論 86
6.2.1電極表面之特性分析 86
6.2.2極限電流的測定與其施加電位的探討 86
6.2.3三氯乙烯感測應答測試與校正曲線 94
6.2.4感測攪拌速率對感測靈敏度與應答時間的影響 97
6.2.5感測TBAT有機電解質濃度對感測靈敏度與應答時間的影響 100
6.2.6製備電極之電鍍電流密度對感測靈敏度的影響 103
6.2.7製備電極電鍍溫度對感測靈敏度的影響 103
6.2.8製備電極電鍍時間對感測靈敏度與應答時間的影響 108
6.2.9工作電極穩定性測試 113
6.2.10實際廢水之感測應答測試 113
6.2.10.1工廠研發部門廢水之感測應答測試 113
6.2.10.2工廠化學機械研磨廢水之感測應答測試 114
6.2.10.3學校高分子合成廢水之感測應答測試 114
6.2.11理論與實驗結果比較 120
6.3結論 121
第七章 應用電鍍鉛修飾鉛箔電極感測三氯乙烯之研究 122
7.1前言 122
7.2結果與討論 123
7.2.1電極表面之特性分析 123
7.2.2極限電流的測定與其施加電位的探討 123
7.2.3三氯乙烯感測應答測試與校正曲線 132
7.2.4感測攪拌速率對感測靈敏度與應答時間的影響 135
7.2.5感測TBAT有機電解質濃度對感測靈敏度與應答時間的影響 138
7.2.6製備電極之鉛箔前處理硝酸濃度對感測靈敏度的影響 141
7.2.7製備電極之鉛箔前處理時間對感測靈敏度的影響 141
7.2.8製備電極之電鍍電流密度對感測靈敏度的影響 148
7.2.9製備電極之電鍍時間對感測靈敏度的影響 153
7.2.10製備電極之電鍍溫度對感測靈敏度的影響 157
7.2.11工作電極穩定度測試 157
7.2.12實際廢水之感測應答測試 163
7.2.13理論與實驗結果比較 165
7.3結論 166
第八章 應用薄膜電極感測三氯乙烯之研究 167
8.1前言 167
8.2結果與討論 167
8.2.1極限電流的測定 167
8.2.1.1 Pt-Ti薄膜電極之極限電流的測定 167
8.2.1.2 Pb-Pt-Ti薄膜電極之極限電流的測定 168
8.2.1.3電鍍鉛修飾Pt-Ti薄膜電極之極限電流的測定 169
8.2.2三氯乙烯感測應答測試與校正曲線 173
8.2.2.1 Pb-Pt-Ti薄膜電極之三氯乙烯感測應答測試 173
8.2.2.2電鍍鉛修飾Pt-Ti薄膜電極之三氯乙烯感測應答測試 178
8.2.2.3電鍍鉛修飾Pt-Ti薄膜電極之三氯乙烯濃度校正曲線 178
8.2.3感測攪拌速率對感測靈敏度的影響 181
8.2.4感測TBAT有機電解質濃度對感測靈敏度的影響 181
8.2.5工作電極重覆使用性測試 184
8.2.6工作電極穩定度測試 184
8.2.7實際廢水之感測應答測試 189
8.2.7.1工廠研發部門廢水之感測應答測試 189
8.2.7.2工廠化學機械研磨廢水之感測應答測試 189
8.2.7.3學校高分子合成廢水之感測應答測試 190
8.2.8理論與實驗結果比較 194
8.3結論 194
第九章 綜合討論、結論與未來工作建議 196
9.1綜合討論 196
9.2總結 201
9.3未來工作建議 201
參考文獻 202
附錄 209
自述 260
著作 261
參考文獻 [1] K. H. Kilburn, Arch. Environ. Health 57 (2002) 113.
[2] T. H. Ma, C. Xu, S. Liao, H. McConnell, B. S. Jeong, and C. D. Won, Mutat. Res. 39 (1996) 359.
[3] Y. Ku, C. M. Ma, and Y. S. Shen, Appl. Catal. B 34 (2001) 181.
[4] T. Mirza, M. Gerin, D. Begin and D. Drolet, AM. Ind. Hyg. Assoc. J. 61 (2000) 431.
[5] C. Thakulsukanant, L. L. Lobban, S. Osuwan and A. Waritswat, Langmuir 13 (1997) 4595.
[6] D. Bogdal, Bulletin Des Societes Chimiques Belges 106 (1997) 809.
[7] D. Bogdal amd J. Pielichowski, Bull. Soc. Chim. Fr. 132 (1995) 1127.
[8] J. V. Grote, C. Hurlimann, M. Scheringer and K. Hungerbuhler, Epidemiology 13 (2002) 221.
[9] P. Kumar, A. K. Prasad, and K. K. Dutta, Hum. Exp. Toxicol. 19 (2000) 117.
[10] D. Wartenberg, D. Reyner, and C. S. Scott, Environ. Health Perspect. 108 (2000) 161.
[11] A. Ojajarvi, T. Partanen, A. Ahlbom, P. Boffetta, T. Hakulinen, N. Jourenkova, T. Kauppinen, M. Kogevinas, H. Vainio, E. Weiderpass, and C. Wesseling, Am. J. Epidemiol. 153 (2001) 841.
[12] A. S. Benjamin, S. H. Raymond, J. D. Tessari, L. W. Chubb, M. D. Brown, C. E. Dean, T. J. Keefe, Toxicology 137 (1999) 137.
[13] J. R. Burg, G. l. Gist, Archives of Environmental Health 54 (1999) 231.
[14] L. R. Rhomberg, Environ. Health Perspect. 108 (2000) 343.

[15] A. L. Lavin, C. F. Jacobson and J. M. DeSesso, Hum. Ecol. Risk Assess. 6 (2000) 575.
[16] C. C. Willhite, Hum. Ecol. Risk Assess. 7 (2001) 767.
[17] IARC Monography Suppl. 7 (1987) 73.
[18] C. Maltoni et al., Ann. N. Y. Acad.Sci. 534 (1988) 316.
[19] National Cancer Institute Technical Report 1976, series No. 2 DHEW (NIH) Publ. 76-802; NTIS Pub. No. PB-264122, Natl. Tech. Inf. Serv., Springfield, VA.
[20] C. Maltoni et al., Osp. Vita. 4 (1977) 108.
[21] B. L. van Duuren et al., J. Natl. Cancer. Inst. 63(1979) 1433.
[22] J. S. Kim, K. Itoh, and M. Murabayashi, Chemosphere 36 (1998) 483.
[23] C. V. Rice and D. Raftery, Chem. Communi. 10 (1999) 895.
[24] K. J. Buechler, R. D. Noble, C. A. Koval, and W. A. Jacoby, Indus. & Engine. Chem. Communi. 38 (1999) 892.
[25] V. Senft, J. Chroma. 337 (1985) 126.
[26] G. E. O’Donnell, A. Juska, R. Geyer, M. Faiz, S. Stalder, J. Chromato. A 709 (1995) 313.
[27] A. Pahler, W. Volkel, W. Dekant, J. Chromato. A 847 (1999) 25.
[28] S. Muralidhara, J. V. Bruckner, J. Chromato. B 732 (1999) 145.
[29] J. F. Fan and J. T. Yates, J. Amer. Chem. Soc. 118 (1996) 4686.
[30] A. Yokoyama, and T. Takayanagi, Chem. Physics Letters 307 (1999) 48.
[31] C. F. Mellot, A. K. Cheetham, J. Physical Chem. 103 (1999) 3864.
[32] T. S. Han, Y. C. Kim, S. Sasaki, K. Yano, K. Ikebukuro, A. Kitayama, T. Nagamune, I. Karubem, Anal. Chim. Acta 431 (2001) 225.
[33] T. S. Han, S. Sasaki, K. Yano, K. Ikebukuro, A. Kitayama, T. Nagamune, I. Karube, Talanta 57 (2002) 271.
[34] T. S. Han, S. Sasaki, K. Yano, K. Ikebukuro, A. Kitayama, T. Nagamune, I. Karube, Anal. Lett. 36 (2003) 539.
[35] W. Gopel, J. Hesse and J. N. Zemel, Sensors, WCH weingeim, (1993).
[36] J. Janata, Principle of Chemical Sensors, Plenum press, New York, (1989).
[37] P. Vujkovic Cvijin, D. A. Gilmore, and G. H. Atkinson, Applied Spectroscopy 42 (1988) 770.
[38] W. Gopel, T. A. Jones, M. Kleitz, J. Lundstrom and T. Seiyama, Sensors a Comprehensive Survey, Vol. 2. Weinheim, New York, Basel & Cambridge. (1991).
[39] A. J. Bard L. R. Faulkner, Electrochemical Methods, New York. (1980).
[40] N. Yamaroe, Chemical Sensor Technology, Vol. 3, Elsevier, Amsterdam, Oxford, New York and Tokyo. (1991).
[41] S. Yamauchi, Chemical Sensor Technology, Vol. 4, Elservier, Amsterdam, Oxford, New York and Tokyo. (1992).
[42] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd edition, John Wiley & Sons, Inc., 2001, p68.
[43] R. R. Adzic, Electrochim. Acta 29 (1984) 1353.
[44] R. kotz, H. J. Lewerenz, P. Bruesch and S. Stocki, J. Electroanal. Chem. 150 (1983) 209.
[45] J. A. Harrison and J. M. Mayne, Electrochim. Acta 28 (1983) 1223.
[46] F. Beck and H. Schulz, Electrochim. Acta 29 (1984) 1569.
[47] M. A. Harmer and H. A. O. Hill, J. Electroanal. Chem. 189 (1985) 229.
[48] T. Chiba, M. Okimoto, H. Nagai and Y. Takata, Bull. Che,. Soc. Jpn. 56 (1983) 719.
[49] G. R. Hunt, M. K. Wilson, J. Chem. Phys. 101 (1994) 5942.
[50] M. Le. Guennec, G. Wlodarczak, J. Demaison, H. Burger, O. Polanz, J. Mol. Spectrosc. 158 (1993) 357.
[51] D. McNaughton, M. Shallard, J. Mol. Spectrosc. 165 (1994) 185.
[52] D. McNaughton, D. McGilvery, F. Shanks, J. Mol. Spectrosc. 149 (1991) 458.
[53] D. McNaughton, D. McGilvery, and F. Shanks, Journal of Molecular Spectroscopy 149 (1991) 458.
[54] M. Le Guennec, G. Wlodarczak, and J. Demaison, Journal of Molecular spectroscopy 158 (1993) 357.
[55] D. McNaughton and M. Shallard, Journal of Molecular spectroscopy 165 (1994) 185.
[56] G. R. Hunt, M. K. Wilson, J. Chem. Phys. 34 (1961) 1302.
[57] D. McNaughton, D. McGilvery, F. Shanks, J. Mol. Spectrosc. 142 (1991) 458.
[58] R. Anttila, M. Hunantti, Z. Naturforsch. 44 (1989) 848.
[59] I. Kinoshita, M. Kijima, and H. Shirakawa, Synthetic Metals 119 (2001) 187.
[60] M. Kijima, S. Mukai, K. Ohmura, H. Shirakawa, M. Kyotani, Synthetic Metals 101 (1999) 59.
[61] M. Kijima, H. Tanimoto, and H. Shirakawa, Synthetic Metals 119 (2001) 353.
[62] Alan G. MacDiarmid, Synthetic Metals 125 (2002) 11.
[63] M. Kijima, K. Hiroki, H. Shirakawa, Macromol. Rapid Commun. 23 (2002) 901.
[64] I. Kinoshita, M. Kijima, H. Shirakawa, Macromol. Rapid Commun. 21 (2000) 1205.
[65] M. Kijima, I. Kinoshita, T. Hattori, H. Shirakawa, Synthetic Metal. 100 (1999) 61.
[66] D. McNaughton, M. Shallard, J. Mol. Spectrosc. 165 (1994) 185.
[67] H. Shirakawa, Reviews of Modern Physics, 73 (2001) 713.
[68] T. H. Shirakawa, and S. Ikeda, J. Polym. Sci., Polym. Chem. Ed. 13 (1943).
[69] H. Shirakawa, T. Ito, and S. Ikeda, Makromol. Chem. 179 (1978) 1565.
[70] T. A. Skotheim (Ed.), Handbook of Conducting Polymers, Vols. 1 and 2, Marcel Dekker, New York, 1986.
[71] M. G. Kanatzidis, Chemical and Engineering News, 36 (1990).
[72] C. K. Chiang, C. R. Fincher Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, A. G. MacDiarmid, Phys. Rev. Lett. 39 (1977) 1098.
[73] C. K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G. MacDiarmid, J. Am. Chem. Soc. 100 (1978) 1013.
[74] K. Akagi, H. Goto, H. Bannai, G. Piao, H. Shirakawa, Stnyhic Metals 86 (1997) 1879.
[75] G. Piao, H. Goto, K. Akagi and H. Shirakawa, Polymer 39 (1998) 3559.
[76] G. Piao, N. Kawamura, K. Akagi, H. Shirakawa, and M. Kyotani, Polymers for advanced technologies 11 (2000) 826.
[77] M. Kijima, K. Ohmura, H. Shirakawa, Synthetic Metals 101 (1999) 58.
[78] G. Piao, N. Kawamura, K. Akagi, H. Shirakawa, M. Kyotani, Synthetic Metals 119 (2001) 103.
[79] K. Masuda, K. Akagi, H. Shirakawa, T. Nishizawa, Journal of Molecular Structure 441 (1998) 173.
[80] G. Piao, K. Akagi, and H. Shirakawa, Synthetic Metals 101 (1999) 92.

[81] G. Piao, S. Kaneko, I. Higuchi, K. Akagi, H. Shirakawa, M. Kyotani, Synthetic Metals 101 (1999) 94.
[82] K. Akagi, G. Piao, S. Kaneko, I. Higuchi, H. Shirakawa, M. Kyotani, Synthetic Metals 102 (1999) 1406.
[83] K. Akagi, G. Piao, S. Kaneko, K. Sakamaki, H. Shirakawa, M. Kyotani, Science 282 (1998) 1683.
[84] X. M. Dai, H. Goto, K. Akagi, H. Shirakawa, Synthetic metals 102 (1999) 1289.
[85] H. Shirakawa, T. Otaka, G. Piao, K. Akagi, M. Kyotani, Synthetic Metals 117 (2001) 1.
[86] Y. Aoki, S. Fujita, S. Haramizu, K. Akagi, H. Shirakawa, Synthetic Metals 84 (1997) 307.
[87] T. S. Liang, K. Akagi, H. Shirakawa, Sythetic Metals 101 (1999) 67.
[88] W. H. Jura and R. J. Gaul, J. Amer. Chem. 80 (1958) 5402.
[89] I. Rosenthal, R. J. Lacoste, J. Amer. Chem. 81 (1958) 3268.
[90] L. L. Miller and E. Riekena, Journal of Organic Chemistry 34 (1969) 3359.
[91] J. N. Seiber, J. Org. Chem. 36 (1971) 2000.
[92] M. von Stackelberg and W. Stracke, Z. Elektrochem. 53 (1949) 118.
[93] S. R. Morrison, Electrochemical at Semiconductor and Oxidized Metal Electrodes New York (1980).
[94] E. C. Butler and K. F. Hayes, Environ. Sci. Technol. 33 (1999) 2021.
[95] H. Lund, and M. M. Baizei, Organic Electrochemistry: An Introduction and a Guide (1991).
[96] D. Dobos, Electrochemical Data, Elesevier Scientific Publishing Company New York (1975).
[97] H. Lund, and M. M. Baizei, Organic Electrochemistry: An Introduction and a Guide, 435 (1991).
[98] F. A. Lowenheim, Modern Electroplating, The Electrochemical Society, New Jersey 3rd.
[99] S. Banerjee et al Environ. Sci. Technol. 14 (1980) 1227.
[100] A. D. Skoog, and J. J. Leary, Principle of Instrumental Analysis 4th Saunders College Publishing (1992).
[101] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing (1978).
[102] M. F. Bento, M. D. Geraldo and M. I. Montenegro, Anal. Chim. Acta 385 (1999) 365.
[103] F. Hoffman, D. Ronen, H. Rosin, F. Milanovich, Talanta 43 (1996) 681.
[104] J. Xie, F. Hui, R. Rosset, Analusis 24 (1996) 214.
[105] W. H. Jura, R. J. Gaul, Journal of the American Society 80 (1958) 5402.
[106] R. R. Keenan, G. D. Clayton, Mich. Private Communication with F. P. Scaringelli, U. S. Environmental Protection Agency, Research Triangle Park, North Carolina (1974).
[107] O. L. Hollis, W. V. Hayes, Anal. Chem. 34 (1962) 1223.
[108] V. P. Zalinyan, N. B. Znamenskaya, Chemistry 45 (1971) 24.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw