進階搜尋


 
系統識別號 U0026-0812200911124575
論文名稱(中文) 微流體多工取樣系統於分子模版感測晶片之應用
論文名稱(英文) Development of Microfluidic Systems with Molecular Imprinting Polymers for Parallel Auto-Sampling of Bio-Samples
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 92
學期 2
出版年 93
研究生(中文) 林展生
研究生(英文) Zhan-Sheng Lin
電子信箱 n9691423@mail.grad.ncku.edu.tw
學號 n9691423
學位類別 碩士
語文別 中文
論文頁數 116頁
口試委員 口試委員-陳文正
口試委員-陳淑慧
口試委員-曾繁根
指導教授-李國賓
中文關鍵字 生物晶片  分子模版  微幫浦  微疏水閥門  多工取樣晶片  晶片型實驗室  區域性分子模印技術  微機電系統 
英文關鍵字 Molecular Imprinting Polymer  MEMS  Biochip  Hydrophobic valve  Localized MIP  Lab-on-a-chip  Micro Pump  Multi-Sampling chip 
學科別分類
中文摘要   本研究成功地利用微機電製程技術,設計並製作出一個利用微流體元件與分子模版(Molecular Imprinting Polymer, MIP)薄膜聚合物整合而成的微流體多工取樣晶片。微量生物樣品進樣後,經由微流體晶片的驅動流至高靈敏度、高生物感測性之分子模版區域,隨後驅動至樣品收集區並進行樣品感測及分析。

  在晶片製作部分,本研究以疏水性矽膠類的聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)為製作晶片之材料,並發展一種表面處理方式,結合氧電漿及化學處理的方法將PDMS做親水性的表面改質並延長時效。利用此方式成功地製作微疏水性閥門於多工取樣晶片,使生物流體循序的進入各分子模版反應區。分子模版薄膜是以多樣區域性分子模印技術(Multiple Localized MIP)製作而成,不同的區域性分子模版可用以感測不同的生物分子。

  最後,本研究成功地整合氣壓式微流體元件與分子模版感測膜,製作1×N循環幫浦分子模版多工取樣晶片以取代傳統大型循環式幫浦。晶片具有微流體傳輸、循環、高靈敏度及高鑑別度(Selectivity)之功能,對未來分子模版的生化分析提供了一種可攜帶式、便利且穩定的研究工具。我們期待分子模版與微流體元件的整合將帶給生物醫學領域更多應用及重大貢獻。


英文摘要   We report an innovative microfluidic chip capable of guiding multiple bio-samples to sensing regions where specific molecular imprinting polymer (MIP) films are deposited such that highly-sensitive, highly-specific bio-sensing could be achieved. MIP is a versatile method for creating macromolecular matrices that exhibit the behavior of selective molecular recognition. The characteristic of the unique selectivity allows MIPs to be the first-priority choice for the sensing of chemicals, bio-mimetic sensor and many other applications. The microfluidic chip is made of natively-hydrophobic poly-dimethylsiloxane (PDMS) materials. We develop a novel surface modification process using the combination of oxygen plasma and post-chemical treatment to extend the hydrophilicity of the PDMS material. We also successfully apply this method to form a PDMS-based micro-hydrophobic valve by selectively modifying the PDMS surface. With this approach, step-wise motion of small amounts of bio-fluids could be achieved and well controlled. Besides, we develop a new multiple-localized-MIP technique to deposit multiple-sensing MIP array. Finally, the combination of pneumatic micro-pumps, microchannels and MIP sensing films forms a new 1×N cycling MIP sampling chip, which could provide a powerful tool capable of binding specific nano-scale molecules and bio-sensing.


論文目次 摘 要 i
Abstract ii
誌 謝 iv
目 錄 vi
表 目 錄 ix
圖 目 錄 x
符 號 說 明 xiv

第一章 緒論 1
1-1 前言 1
1-2 微機電系統 2
1-3 分子模版感測技術簡介 4
1-4 分子模版感測技術之應用 6
1-5 微流體多工取樣晶片於分子模版之整合 8
1-6 研究動機與目的 10
1-7 研究方法 13
1-8 文獻回顧 15
1-8-1 分子模版文獻回顧 15
1-8-2 微閥門及微幫浦文獻回顧 16

第二章 理論 23
2-1 微流體多工取樣晶片設計原理 23
2-1-1 親疏水性材質改質與探討 24
2-1-2 微疏水閥門設計原理 28
2-1-3 氣體驅動式微閥門及微幫浦設計原理 35
2-2 分子模版感測技術 39
2-2-1 分子模版聚合物合成原理 39
2-2-2 分子模版聚合物之製備 41
2-2-3 分子模版聚合物之聚合 42

第三章 多工取樣晶片之設計及製作 44
3-1 多工自動取樣晶片設計 44
3-1-1 微疏水閥門多工取樣晶片設計 45
3-1-2 氣體驅動式多工取樣晶片設計 48
3-1-3 1×N循環式微幫浦多工取樣晶片與分子模版之整合 50
3-2 光罩製作 52
3-3 晶片製程 53
3-3-1 晶片清洗 53
3-3-2 SU-8厚膜光阻製程 55
3-3-3 PDMS注模製程技術 59
3-3-4 PDMS親疏水區域定義、改質及晶片接合 61
3-3-5 金屬蒸鍍及蝕刻 63
3-3-6 區域化分子模版技術 67
3-4 晶片接合及晶片封裝 73

第四章 結果與討論 79
4-1 實驗裝置及架設 79
4-2 微流體多工取樣晶片實驗及分析 81
4-2-1 PDMS表面改質實驗及分析 82
4-2-2 微疏水閥門多工取樣晶片測試結果 85
4-2-3 氣體驅動式多工取樣晶片實驗及分析 86
4-3 分子模版感測技術探討 91
4-3-1 區域性分子模版量化及分析 92
4-3-2 區域性分子模版黏著探討 95
4-3-3 分子模版晶片測試 97
4-4 1×3循環式微幫浦分子模版多工取樣晶片實驗及分析 99
4-4-1 晶片測試流程 100
4-4-2 晶片測試結果與實驗分析 103

第五章 結論與未來展望 107
5-1 結論 107
5-2 未來展望 108

參考文獻 110
自 述 115
著 作 116

參考文獻 1. K. K. Jain, “Applications of biochip and microarray systems in pharmacogenomics,” Pharmacogenomics, 3, 289-307. (2000)
2. L. W. van H. Nicole, V. Oscar, M. M. L. van H. Adele, J. K. Esther, P. Ad, A Aharoni, J van T. Arjen, K. Jaap, “The application of DNA microarrays in gene expression analysis,” Journal of Biotechnology, 78, 271-280. (2000)
3. I .Erill, R. Villa, P. Goufignon, L. Fonseca, J. A. Plaza, “Silicon microsystem passivation for high-voltage applications in DNA chips,” Microelectronics and Reliability, 40, 787-789. (2000)
4. F. Vinet, P. Chaton, Y. Fouillet, “Microarrays and microfluidic devices : miniaturized systems for biological analysis,” Microeletronic Engineering, 61-62, 41-47. (2002)
5. D. J. Beebe, M. Wheeler, H. Zeringue, E. Walters, S. Raty, “Microfluidic technology for assisted reproduction,” Theriogenology, 57, 123-135. (2002)
6. T. Richter, L. Loranelle, O. D. Richtard, U. Bilitewski, D. J. Harrison, “Bi-enzymatic and capillary electrophoretic analysis of non-fluorescent compounds in microfluidic devices: Determination of xanthine,” Sensors and Actuators B, 81, 369-376. (2002)
7. 林宗榮,蔡耀慶,周澤川,“分子模仿版拓印技術-仿人造抗體之合成之介紹”,科儀新知,第24巻,第三期,第91~99頁(2002)。
8. 林進益,分子拓印聚合物,化工資訊,第17-26頁(2000)。
9. F. L. Enisg, and O. Hayden, “Tailor-Made Materials for Tailor-Made Applications:Application of Molecular Imprints in Chemical Analysis”, Trends Anal. Chem. 18(3), 138-145(1999)
10. O. Brűggemann, K. Haupt, L. Ye, E. Yilmaz, and K Mosbach, “New configurations and applications of molecularly imprinted polymers.”J. Chromatogr. A 889(1-2), 15-24(2000)
11. D. Kriz, O. RamstrÖm, and K. Mosbach, “Molecular imprinting – New possibilities for sensor technology. ”, Anal. Chem. 69(11), 345-349(1997)
12. L. Pauling, “A theory of the structure ank process of formation of antibodies”, J. Am. Chem. Society. 62 2643-2657(1940)
13. G. Wulff, A. Sarhan, “Use of polymers with enzyme-analogous structures for the resolution of racemates”, Angew. Chem., 11(1972)341.
14. L. Anderson., G. Sellergren., K. Mosbach., “Imprinting of amino acid derivatives in macroporous polymers”, Tetrahedron Lett., 25(1984) 521.
15. E. Hedborg, F. Winquist, I. Lumdstorm, L Andersson, K. Mosbach, “Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices ”, Sens. Actuator A-Phys., 38(1993)796.
16. 李昆峰, “電聚合鄰苯二胺薄膜之製作與評估其在分子模印感測上之應用”, 國立成功大學工程科學研究所碩士論文(2001)。
17. 郭盈成, “新式微幫浦與微閥門之設計與製作”, 國立成功大學工程科學研究所碩士論文(2003)。
18. L. Smith and B. Hok, “A Silicon Self-Aligned Non-Reverse Valve,” Solid-State Sensors and Actuators, pp. 1049-1051, 1991.
19. R. M. Mcneely, M. K. Spute, N. A. Tusneem, A. R. Oliphant, “Hydrophobic microfluidics,” SPIE, Conference on Microfluidic Devices and Systems, Vol. 3877, p. 210-220, September 1999.
20. H. Andersson, “Hydrophobic valves of plasma deposited octafluorocyclobutane in DRIE channels”, Sensors and Actuators B, pp. 136-141, 2001.
21. Y. Feng, “Passive valves based on hydrophobic Microfluidics”, Sensors and Actuators A, pp. 138-143, 2003.
22. 回寶珩, 林展生, 李國賓, “PDMS表面處理技術及其在新式微閥之應用”, The 6th Nano Engineering and Micro System Technology Workshop, Sec. 4C-5, 2002.
23. C. Vieider, O. Ohman and Elderstig, “A Pneumatically Actuated Micro Valve with a Silicone Rubber Membrane for Integration with Fluid-Handling Systems”, Solid-State Sensors and Actuators, Vol. 2, pp. 284-286, 1995.
24. J. G. Spencer, “Piezoelectric Micropump with Three Valves Working Peristaltically”, Sensor and Actuators A, Vol. 21-23, pp. 203-206, 1990.
25. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science, Vol. 288, pp. 113-116, 2000.
26. K. Hosokawa, “Low-cost technology for high-density microvalve arrays using Polydimethylsiloxane”, IEEE, 2001.
27. Robin H, “Fabrication and characterization of hydrogel-based Microvalves”, IEEE, 2002.
28. D. J. Beebe, J. S. Moore, Q. Yu, “Microfluidic tectonics: A comprehensive construction platform for microfluidic systems”, PNAS, vol. 97, no. 25, 2000.
29. B. E. Slentz, N. A. Penner, “Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization”, Journal of Chromatograghy A, p.225-233, 2002.
30. K. Mosbach “Molecular imprinting”,Trends Biochem. Sci., 19(1994)9-14.
31. 鶴田楨二,薛敬和,高分子合成反應,高立圖書公司,p1-5。
32. 鄧景鴻,「以膽紅素為模版材料之製備及吸脫附感測之探討」,碩士論文,國立成功大學化學,台南(2003)。
33. F. Svec and J. M. Frechet, “Continuous rods of macroporous polymer as highperformance liquid chromatography separation media”, Analytical Chemistry, 64, pp. 820-822, 1992.
34. K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata and T. Araki, “Molecularlyimprinted uniform-size polymer-based stationary phase for high performanceliquid chromatography structural contribution of cross-linked polymer network onspecific molecular recognition”, Journal of Chromatography A, 728, pp. 139-147,1996.
35. H. Y. Wang, T. Kobayashi and N. Fujii, “Molecular imprinting membrance prepared by phase inversion precipitation technique”, Langmuir, 12, pp.4850-4856, 1996.
36. C. H. Lin, G. B. Lee, B. W. Chang, G. L. Chang, “A New Fabrication Process of Ultrathick Microfluidic Microstructures Utilizing SU-8 Photoresist,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 1-8, 2002.
37. Data Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 50 & 100, released by MICRO-CHEM. Corp.
38. J. S. Lin, B. W. Chang, G. B. Lee, C. C.Lin, S. H. Chen, “High-aspect-ratio Microchips for Microfluidic Applications,” The 5th Nano Engineering and Micro System Technology Workshop, Vol. 2 pp. 159~165, Nov. 22-23, 2001.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw