進階搜尋


 
系統識別號 U0026-0812200911124064
論文名稱(中文) 以異辛烷為汽油添加劑對機車引擎揮發性有機物及醛酮化合物排放之影響
論文名稱(英文) Effect of using iso-octane as gasoline additive on VOC and Carbonyl emissions from a motorcycle engine
校院名稱 成功大學
系所名稱(中) 環境醫學研究所
系所名稱(英) Institute of Environmental and Occupational Health
學年度 92
學期 2
出版年 93
研究生(中文) 邱雅琪
研究生(英文) Ya-Chi Chiou
學號 s7691106
學位類別 碩士
語文別 中文
論文頁數 171頁
口試委員 指導教授-蔡朋枝
口試委員-彭瓊瑜
口試委員-米孝萱
召集委員-石東生
中文關鍵字 行車型態  異辛烷  醛酮類化合物 (Carbonyls)  揮發性有機物(VOCs)  動力計 
英文關鍵字 iso-octane  driving mode  Carbonyls  volatile organic compounds (VOCs) 
學科別分類
中文摘要   機車引擎已知會排放揮發性有機物(Volatile Organic Compounds,簡稱VOCs)與醛酮類化合物(Carbonyl compounds,簡稱Carbonyls)於尾氣中,若長期暴露於高濃度的VOCs與Carbonyls的環境中會對人體造成傷害。然有關機車利用異辛烷來代替MTBE當抗震爆劑的燃油使用於機車引擎時,其尾氣排放VOCs及Carbonyls濃度的變化情形仍有待調查與研究。本研究針對中油92市售油、92基礎油,及以92基礎油分別再添加體積含量10%、20%、30%、40%及50%異辛烷之汽油(分別以92+10%、92+20%、92+30%、92+40%及92+50%表示),及95市售油、95基礎油、分別以95基礎油再添加體積含量10%、20%、30%異辛烷之汽油(分別以95+10%、95+20%及95+30%表示),探討不同油種及不同添加比例異辛烷時之VOCs及Carbonyls排放特徵。本研究以動力計模擬機車之三種行車型態 (怠速、30km/hr及50km/hr),並以熱脫附管及DNPN cartridge分別採集機車尾氣之VOCs及Carbonyls樣本。結果顯示無論95或92汽油(含市售油、基礎油及不同添加比例異辛烷之基礎油),均可發現其Total-Carbonyls尾氣濃度為50km/hr>Idle>30km/hr。95基礎油在不同異辛烷添加比例情形下,在三種行車狀態下均可發現95+0%>95+30%>95+20%>95+10%,即加入適量異辛烷時可降低Carbonyls之排放。就95市售油(辛烷值=95)與95+10%(辛烷值=95.1)而言,三種行車狀態下,均可發現95+10%異辛烷<95市售油,可知以異辛烷為添加劑可降低機車引擎Carbonyls之排放。92基礎油在不同異辛烷添加比例情形下,在三種行車狀態平均下可發現92+40%>92+50% >92+0%>92+10%>92+20%>92+30%,亦即加入適當的異辛烷與辛烷值可降低機車引擎Carbonyls之排放,但過量時可能因此而增加Carbonyls之排放濃度。就92市售油(辛烷值=92)與92+10%(辛烷值=92.1)而言,在三種行車狀態下,均可發現92+10%異辛烷<92市售油,可知以異辛烷為添加劑可降低機車引擎Carbonyls之排放。就95與92汽油無論其基礎油在不同添加異辛烷比例情形下,及其在三種行車狀態之Carbonyls平均排放濃度均可發現95汽油<92汽油,即使用95汽油較之92汽油為低。就VOCs排放而言,結果顯示除92市售油Total-VOCs尾氣濃度為50km/hr > Idle >30km/hr外,無論95或92汽油(含市售油、基礎油及不同添加比例異辛烷之基礎油,均可發現為Idle>50km/hr>30km/hr。95基礎油在不同異辛烷添加比例情形下,在Idle及30km/hr下均可發現95+30%>95+0%> 95+20%> 95+10%,但在50km/hr卻發現95+0%> 95+30%> 95+20%>95+10%,即VOCs之排放除與辛烷值有關亦受操作狀態影響。就95市售油(辛烷值=95)與95+10%(辛烷值=95.1)而言,在三種行車狀態下均可發現95+10%異辛烷>95市售油,其原因可能與本研究未分析MTBE的濃度造成95市售油Total-VOCs尾氣濃度低估有關。92基礎油在不同異辛烷添加比例情形下,在三種行車狀態平均下可發現92+20%>92+50% >92+0%>92+30% >92+40% >92+10%,即加入適當的異辛烷與辛烷值可降低機車引擎Carbonyls之排放。但就92市售油(辛烷值=92)與92+10%(辛烷值=92.1)而言,在三種行車狀態下均可發現92+10%異辛烷<92市售油,可知以異辛烷為添加劑可降低機車引擎Carbonyls之排放。就95與92基礎油在不同添加異辛烷添加比例,在三種行車平均狀態可發現,95汽油<92汽油,即使用95汽油可減少機車引擎Total-VOCs之排放濃度。
英文摘要   It is known that the operation of a motor engine will emit both volatile organic compounds (VOCs) and carbonyls which lead to adverse health effects after long term exposures to human-beings. However the use of iso-butane to replace MTBE as a gasoline additive for anti-explosion which occurring at the inside of vehicle engine has never been investigated. This study investigate VOCs and carbonyls concentrations from motorcycle engine exhaust while tested using (1) 92 lead-free gasoline in-use (92in), 92 lead-free base gasoline (92+0%), and that with 10%, 20%, 30%, 40%, and 50% iso-butane (in volume) additives (i.e., 92+10%, 92+20%, 92+30%, 92+40%, and 92+50%), and (2) 95 lead-free gasoline in-use (95in), 95 lead-free base gasoline (95+0%), and that with 10%, 20%, and 30% iso-butane (in volume) additives (i.e., 95+10%, 95+20%, and 95+30%). Three driving modes were investigated, including idling, 30km/h, and 50km/h, respectively. VOC and carbonyl samples were collected from engine exhaust by using thermal desorbtion tubes and DNPN cartridges, respectively. Results show that total-carbonyl concentrations in engine exhaust, while using both series of 92- and 95-LFG (including those with different iso-butane fractions), shared the same trend: 50 km/h > idling > 30 km/h. For 95 lead-free base gasoline (95+0%) and that with different fractions of iso-butane (i.e., 95+10%, 95+20%, and 95+30%), we consistently found that the trend on total-carbonyl concentrations under three driving conditions as: 95+0% > 95+30% > 95+20% > 95+10%. The above result suggests that the adding of iso-butane in 95-LFG can effectively reduce the emission of carbonyls. While comparing carbonyl emissions by using 95-LFG with similar butane number (BN) but with different additives, the trend of 95in (BN=95) > 95+10% (BN=95.1) were consistently found in the three tested driving conditions. The above results suggest that the use of iso-butane as an additive to replace the use of MTBE might reduce carbonyl emissions from motor vehicle engines. For 92 lead-free base gasoline (92+0%) and that with different fractions of iso-butane (i.e., 92+10%, 92+20%, 92+30%, 92+40%, and 92+50%%), we consistently found that the trend on total-carbonyl concentrations under three driving modes as: 92+40% > 92+50% > 92+0% > 92+10% > 92+20% > 92+30%. The above result suggests that the adding of iso-butane in 95-LFG with suitable amounts can effectively reduce the emission of carbonyls, but with over adding fractions will results in the increasing the emission of carbonyls. While comparing carbonyl emissions by using 92-LFG with similar butane number (BN) but with different additives, the trend of 92in (BN=92) > 92+10% (BN=92.1) were consistently found in the three tested driving conditions. The above results suggest that the use of iso-butane as an additive to replace the use of MTBE might reduce carbonyl emissions from motor vehicle engines. Finally, we compared carbonyl emissions from motorcycle engines by using 92 and 95 series LFG.. We consistently found that 92 series LFG > 95 series LFG for the averaged carbonyl concentrations under the three testing modes. The above results suggest that the use of 95-LFG will result in the less carbonyl emissions from motorcycle exhausts.

  For VOCs, we found that total-VOC concentrations in engine exhaust, while using both series of 92- and 95-LFG (including those with different iso-butane fractions,but execepting 92-LFG), shared the same trend: idling > 50 km/h > 30 km/h. For 95 lead-free base gasoline (95+0%) and that with different fractions of iso-butane (i.e., 95+10%, 95+20%, and 95+30%), we consistently found that the trend on total-VOC concentrations under idling and 30km/hr conditions as: 95+30% > 95+0% > 95+20% > 95+10%, but we found that the trend on total-VOC concentrations under 50km/hr condition as: 95+0% > 95+30% > 95+20% > 95+10%. The above result suggests that the emission of VOCs can be affected in 95-LFG by .butane number and driving mode. While comparing VOCs emissions by using 95-LFG with similar butane number (BN) but with different additives, the trend of 95in (BN=95) > 95+10% (BN=95.1) were consistently found in the three tested driving conditions. The above results suggest that the less total-VOC concentrations from motorcycle exhausts be estimated because we do not analyze the concentration of MTBE in exhaust. For 92 lead-free base gasoline (92+0%) and that with different fractions of iso-butane (i.e., 92+10%, 92+20%, 92+30%, 92+40%, and 92+50%%), we consistently found that the trend on total-VOC concentrations under three driving modes as: 92+20% > 92+50% > 92+0% > 92+30% > 92+40% > 92+10%. The above result suggests that the adding of iso-butane in 92-LFG with suitable amounts can effectively reduce the emission of carbonyls. While comparing VOC emissions by using 92-LFG with similar butane number (BN) but with different additives, the trend of 92in (BN=92) > 92+10% (BN=92.1) were consistently found in the three tested driving conditions. The above results suggest that the use of iso-butane as an additive to replace the use of MTBE might reduce VOC emissions from motor vehicle engines. Finally, we compared carbonyl emissions from motorcycle engines by using 92 and 95 series LFG.. We consistently found that 92 series LFG > 95 series LFG for the averaged VOC concentrations under the three testing modes. The above results suggest that the use of 95-LFG will result in the less VOC emissions from motorcycle exhausts.
論文目次 第一章 前言 1
第一節 研究源起 1
第二節 研究目的 2

第二章 文獻回顧 3
第一節 揮發性有機物之性質 3
壹、 揮發性有機物之來源與形成機制 3
貳、 揮發性有機物之分佈特性 4
參、 揮發性有機物之健康危害 5
第二節 醛酮化合物之性質 6
壹、 醛酮化合物之來源與形成機制 6
貳、 醛酮化合物之分佈特性 7
參、 醛酮化合物之健康危害 8
第三節 機車引擎排放特徵 9
壹、 交通污染源VOCs及Carbonyls排放特徵 9
第四節 機動車輛操作參數對VOCs及Carbonyls之影響 10
第五節 添加劑的應用 14
壹、 添加劑的變遷 15
貳、 添加劑對VOCs及Carbonyls之影響 16
參、 辛烷值 17
肆、 烷化 18

第三章 研究方法與設備 32
第一節 研究架構 32
第二節 採樣方法 32
壹、 引擎形式 32
貳、 控制變因 33
參、 燃料油品 33
第三節 採樣設備 33
壹、 機車尾氣採樣之採樣程序 34
貳、 採樣前處理 35
參、 VOCs的採樣程序 35
肆、 Carbonyls的採樣程序 36
伍、 CO2、CO及HCx的採樣程序 36
第四節 分析方法 38
壹、 VOCs的分析方法 38
貳、 Carbonyls的分析方法 39

第四章 研究品質控制 46
第一節 採樣程序的品質保證及品質控制 46
第二節 VOCs與Carbonyls之分析之品質保證與品質控制 46
壹、 空白實驗 46
貳、 VOCs於分析儀器之滯留時間 48
參、 標準品檢量線之建立 48
肆、 回收率試驗(Recovery Test) 48
伍、 方法偵測極限 49
第三節 資料處理 50
壹、 Carbonyls及VOCs物種變化情形 50
貳、 Carbonyls及VOCs之排放係數 51

第五章 結果與討論 64
第一節 95無鉛汽油在不同異辛烷添加比例下Carbonyls之排放情形 64
第二節 95無鉛汽油以異辛烷為添加劑對現今機車引擎Carbonyls排放之影響 68
第三節 92無鉛汽油在不同異辛烷添加比例下Carbonyls之排放情形 70
第四節 92無鉛汽油以異辛烷為添加劑對現今機車引擎Carbonyls排放之影響 74
第五節 比較95無鉛汽油及92無鉛汽油在不同異辛烷添加比例Carbonyls之排放情形 77
第六節 95無鉛汽油在不同異辛烷添加比例下VOCs之排放情形 78
第七節 95無鉛汽油以異辛烷為添加劑對現今機車引擎VOCs排放之影響 83
第八節 92無鉛汽油在不同異辛烷添加比例下VOCs之排放情形 85
第九節 92無鉛汽油以異辛烷為添加劑對現今機車引擎VOCs排放之影響 88
第十節 比較95無鉛汽油比例VOCs及92無鉛汽油在不同異辛烷添加排放情形 90

第六章 結論與建議 92
第一節 結論 92
第二節 建議 93
參考文獻 1. Atkinson R, Tuazon EC, Aschmann SM, "Products of the Gas-Phase Reactions of O3 with Alkenes", Environ. Sci. Technol. Vol. 29, Iss. 7, pp. 1860-1866 , 1995.

2. Alstshuller AP, "Production of Aldehydes as primary emissions and secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours", Atmospheric Environment, Vol. 27A, pp.21-31, 1993.

3. ACGIH .Ethylbenzene. In: ACGIH eds. "Documentation of the threshold limit values and biological exposure indices Cincinnati", OH: ACGIH, 581-584,1991.

4. Bottenheim JW, Barrie LA, Atlas E, Heidt LE, Niki H. Rasmussen R. A, Shepson P. B, ”Depletion of flow tropospheric ozone during Arctic spring: The Polar Sunrise experiment 1988”, Journal of Geophysical Research. Vol. 95, pp. 18555-18568, 1990.

5. Bailey RA, Clark HM, Krause S, and Strong RL. “Atmospheric Press, New York, 1978.

6. Chao MR, Lin TC, Chao HR, Chang FH, Chen CB. ” Effects of methanol-containing additive on emission characteristics from a heavy-duty diesel engine”, The Science of Total Environ. Vol 279, pp.167-179, 2001.

7. Chan CC, Nien CK, Tsai CY, Her GR. "Comparison of Tail Pipe Emissions from Motorcycles and Passenger Cars", J. Air & Waste Manage . Assoc. 45, pp. 116-124, 1995.

8.“Clean air amendments of 1990” PL 101-549, Sections 203, “emission standards for conventional motor vehicles” and 243, “standards for light- duty clean fuel vehicles”.

9. Clean air amendments of 1990, PL101-549, Section203, emission standards for conventional motor vehicle and 243, standards for light-duty clean fuel vehicle.

10. Dann T, Wang D. "Volatile organic compound measurements
in Canadian urban and rural areas", Annual. Meeting, A&WMA, Missouri. Vol. 85,pp.1989-1990, 1992.

11. Dann T, Chiu C, Douhy J, Wang D. "Measurement of Toxic Air Pollutants in Canadian Urban Air", Annual Meeting & Exhibition of the Air & Waste Management Association, British Columbia. Vol. 84, 1991.

12. Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther A. B, Hewitt N. G, Lamb B, Liu S, Trainer M, Westberg H and Zimmermann P, "Emissions of volatile organic compounds from vegetation and the implication for atmospheric chemistry ", Global biogeochemical Cycle. Vol.6, pp.389-430, 1992.

13. Finlayson-Pitts BJ, Pitts JN. "Atmospheric chemistry ", John Wiley and sons. New York, 1986.

14. Gabele P. “Exhaust emission from four stroke lawn mower engine” Journal of the Air & Waste Management Association, Vol. 47, pp. 945-952, 1997.

15. Grigorios C, Koltsakis M, Rothscild M, ”Catalytic Automotive Exhaust Aftertreatmeant”, Prog Energy Combution Sci. Vol.23, pp.1-39, 1997.

16. Grosjean E, Williams E. L. II, Grosjean D, ” Ambient levels of formaldehyde and acetaldehyde in Atlanta, Georgia”, Air and Waste. Vol. 43, pp. 469-474, 1993.

17. Garcia JP, Beyne-Masclet S, Mouvier G. ”Emissions of Volatile Organic Compounds by Coal-Fired Power Stations”, Atom Environ, Vol. 26A, NO. 9, pp. 1589-1597, 1992.

18. Hass U, Lund SP, SImonsen L, Fries AS, "Effects of prenatal exposure to xylene on postnatal development and behavior in rats", Neuotoxicology And Teratology. Vol17, pp.341-349, 1995.

19. Heywood JB, Tabacyzinski RJ. “Current developments in spark- ignition engines” in a History of the Automotive International Combustion Engine, SAE Publication Sp-409, 1976.

20. International Agency for Research on Cancer (IARC),
Monographs on the evaluation of the carcinogenic risk of chemicals to man.Geneva:World Health Organization,IARC, 1999.

21. Kaiser EW, Siegl WO, Cotton DF, Anderson R. “Effect Of Fuel Structure On Emissions From A Spark-Ignited Engine”. Environ. Sci. Technol. , Vol (3) 27, pp.1440-1447, 1993.

22. Kachi H, Akiyama K, Tsuruga F. “Analytical method for aldehyde emissions from methanol engine in 2,4-dinitrophenylhydrazone from using a glass capillary column” JSAE Review, Vol. 9, No. 2, 97-99, 1988.

23. Larsson PO, Berggren H, Andersson A, ”Supported Metal Oxides for Catalystic Combution of CO and VOCs Emissions: Preparation of Titania Ovrelayers on a Macroprous support”, Catalysis Today. Vol35, pp.116-124, 1995.

24. Levaggi DA, Wayman S. "Gaseous Toxics Monitoring in the San Francisco Bay Area: a Review and Assessment of Four Years of Data", Annual Meeting & Exhibition of the Air & Waste Management Association, Vancouver, B. C, Columbia. Vol.84, 1991.

25. Lowe DC, Schmidt U. ”Formaldehyde measurements in the nonurban atmosphere”, Journal of Geophysical Research. Vol. 88, pp. 10844-10858, 1983.

26. Levy H. "Normal atmosphere: large radical and formaldehyde concentration predicted", Science. Vol.173, pp.141-143, 1971.

27. Magnusson R, Nilsson C. ”Emissions of Aldehydes and Ketones from a Two-Stroke Engine Using Ethanol and Ethanol-Blended Gasoline as Fue”, Environ. Sci. Technol. Vol.36, pp.1656-1664, 2002.

28. Montzakz SA, Trainer M, Goldan PD, Kuster WC, Fehsenfeld FC. Journal of Geophysical Research. Vol. 98, pp. 1101, 1993.

29. Mackenzie AR, Arrison RM. ”The Role of Bioginic Hydro-carbons in the Production of Ozone in Urban Plumes in Sotheast England”, Atom Environ. Vol. 25, pp. 351-359, 1991.

30. NTP (National Toxicology Program), Board of Scientific Counselors, NTP report on Carcinogenesis. NTP, research Triangle Park, NC.

31. Nihlen A, Lof A, Johanson G. “Experimental exposure to methyl tertiary-butyl ether Ⅰand Ⅱ: Toxicokinetic in humans”, Toxicology and Applied Pharmacology. Vol.148, pp 274-287, 1998

32. Ortiz E, Alemon E, Romero D, Romero J, Arriaga L, Olaya P, Guzman F, Rios C. “Personal exposure to benzene, toluene and xylene in different microenvironments at the Mexico City metropolitan zone”, The Science of the Total Environment . Vol.287; pp.241-248, 2002.

33. Ono A, Sekita K, Ogawa Y, Hirose A, "Repreductive and developmental toxicity studies of toluene. II. Effects of inhalation exposure on fertility in rats". Journal of Environmental Pathology, Toxicology and Oncology, Vol15, pp. 9-20, 1996.

34. Osama MM, Matar MS, Koreish S. ”Effect of methyl tertiary butyl ether (MTBE) as a gasoline additive on engine performance and exhaust emission”, Fuel Science and Technology International. Vol. 11, pp. 1331-1343, 1993.

35. Oberdorter PE. ”The determination of aldehydes in automobile exhaust”, SAE Paper 760378, 1976.

36. Possanzini M, Dipalo V, Petricca M, Fratarcangeli R, Brocco D. Atmos. Environ., Vol.30, pp. 3757-3764, 1996.

37. Possanzini M, Dipalo V, "Determination of olefinic aldehydes other volatile VOCs in air samples by DNPH-coated cartridges and HPLC ", Chromatographia. Vol. 40, pp. 134-138, 1995.

38. Perry R, Gee IL. ”Vehicle emissions in relation to fuel composition”, The Science of the Total Environment, Vol. 169, pp. 149-156, 1995.

39. Radian Corp, “Control Techniques for Volatile Organic Emission from Stationary Source”, US EPA, EPA-4502/2-78-022, 1978.

40. Stikkers DE. The Science of the Total Environment , “Octane and the environment”, Vol.299, pp.37 –56, 2002.

41. Seinfeld JH. "Chapter 2 chemistry of ozone in the urban
and regional atmosphere" Progress and Problems in Atmospheric Chemistry, Advanced Series in Physical Chemistry- Vol. 3, World Scientific Publishing Co. Pte. Ltd., Singapore, p.47-56, 1995.

42. Sweet CW, Vermette SJ. “Toxic Volatile Organic Compounds in Urban Air in Illinois”, Environ. Sci. Technol., Vol.26(1), 165-173, 1992.

43. Scheff PA, Porter JA. “Improvement of VOCs Source Fingerprints for Vehicles and Refineries “, Annual Meeting, June 16-21, Canada. Vol.81, pp.35-48, 1991.

44. Schulam P, Newbold R, Hull L A. ”Urban and rural ambient air aldehyde levels in Schenectady, New York and on Whiteface Mountain, New York”, Atmospheric Environment. Vol. 19, pp.623-626, 1985.

45. Sexton K, Westberg H. “Photochemical Ozeone Formation from Petroleum Refinery Emission”, Atmospheric Environment, Vol. 17, NO.3, 467-475, 1983.

46. Seinfeld, JH. “Atmospheric chemistry and physics of
air pollution”, John Wiley and Sons, Inc., Canada, p. 58-
59, 1986.

47. Sitting M. “Aldehydes” Pollution Detection and Monitoring Handbook, Noyes Data Corp., Park Ridge, New Jersey, 1974.

48. Tanner RL, Miguel A, Andrade JB, Gaffney JS, Streit GE. " Atmospheric chemistry of aldehyde; Enhance peroxyacetyl nitrate formation from ethanol-fueled vehicular emission", Environmental Science and Technology.
Vol. 22, pp. 1026-1034, 1988.

49. Tomin J, Kent J, Proceedings of Fifth International Alcohol Fuel Technology Sympium, Vol. 3, pp.207-214, 1982.

50. Wang WG, Clark NN, Lyons DW, Yang RM, Gautam M, Bata RM, Loth JL. “Emissions comparisons from alternative fuel buses and diese Technology”, Environ. Sci. Technol. Vol. 37, pp. 3132-3137, 1997.

51. Winebrake JJ, Deaton ML. "A Comparative Analysis of Emissions Deterioration for In-Use Alternative Fuel Vehicles", J. Air & Waste Manage. Vol. 47, pp.11291-1296, 1997.

52. Warneck P. ”Chemistry of the natural atmosphere”, International Geophysical Series, Academic, San Diego. Vol. 41, 1988.

53. Wadden R.A, “Source discrimination of short-term hydrocarbon samples measured aloft”, Environ. Sci. Technol., Vol.20, pp. 473-483, 1986.

54.Yükesl F, Yükesl B. ”The use of ethanol–gasoline blend as a fuelin an SI engine”, Renewable engine. Vol. 29, pp.1181-1191, 2004.

55. Zervas E, Montagee X, Lahate J. “Emission of Alcohols and VOC Compounds from a Spark Ignition Engine. Influence of Fuel and Air/Fuel Equivalence Ratio”. Environ. Sci. Technol. Vol.36, pp.2414-2421, 2002.

56. Zervas E, Montagne X, Lahaye J. ” Emission of specfic pollutants from a compression ignition engine— Influence of fuel hydrotreatment and fuel/air equivalence ratio”, Atom Environ. Vol35, pp.1301-1306, 2001.

57. Zweiding RB, Sigsby JE, Tejada Jr. SB, Stump FS, Dropkin DL, Ray W D. ” Detailed hydrocarbon and aldehyde mobile source emissions from roadway studies”, Environmental Science and Technology. Vol. 22, pp. 956-962, 1988.

58. 王建鴻,乙醇替代燃料對於汽油引擎排放廢氣中醛酮類化合物之研究,國立成功大學環境工程研究所碩士論文,2000。

59. 交通部統計處,中華民國交通月報,2003。

60. 交通部統計處網站,2002。

61. 行政院環保署,移動源排放VOCs光化學反應特徵之分析研究,台北,1998。

62. 行政院環保署 “添加劑(含機油)對車輛排放空氣污染物之影響” EPA-85-1401-09 50, pp. 6-21, 1996..

63. 江右君,台北地區空氣中揮發性有機物特性與汙染源分析,第十屆空氣污染研討會,pp.201-208,1993。

64. 何文淵,汽油車引擎廢氣揮發性有機物成份及光化反應潛勢,國立成功大學環境工程研究所碩士論文,1999。

65. 吳正道,低苯代用燃料應用於二行程機車之研究,國立中興大學機械工程研究所碩士論文,1999。

66. 翁閎政,機車排氣之揮發性有機物特徵及光化反應性研究,國立成功大學環境工程研究所碩士論文,1998。

67. 黃思篿、鍾美華,有機性有害空氣污染物列管名單篩選方法之探討,第十六屆空氣污染研討會,pp.193-200,1993。

68. 詹長權,建立石油類燃料排放揮發性物質(VOCs)資料庫及危害風險管理規劃-以管制油品來降低大氣中毒性污染物濃度:醛類,行政院環保署計劃EPA-84-F102-09-01,台北,1995。

69. 趙浩然,多種機動車輛排放醛酮類化合物之研究,國立成功大學環境工程研究所碩士論文,2000。

70. 環保署網站,http://www.epa.gov.tw,1999。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2004-07-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2004-07-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw