進階搜尋


 
系統識別號 U0026-0812200911114630
論文名稱(中文) 樹脂與碳纖維布被覆對高溫超導塊材YBCO機械性質的影響
論文名稱(英文) Effects of coating resin and carbon fabric on the mechanical property of high temperature superconductor YBCO
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 92
學期 2
出版年 93
研究生(中文) 吳采蓉
研究生(英文) Tsai-Jung Wu
學號 n5691142
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 指導教授-陳引幹
口試委員-許聯崇
口試委員-鄭銘揚
中文關鍵字 YBCO  碳纖維  三點彎曲試驗  樹脂 
英文關鍵字 carbon fiber  YBCO  three-point bending test  resin 
學科別分類
中文摘要   超導體在成長及充氧退火階段,因熱應力及熱膨脹係數的差異,內部會存在一定數量的裂縫及孔洞,在於實際應用時,外加磁場與超導體內部的電流造成強大的電磁應力,當磁場大於10T以上時,過大的應力會對超導體造成破壞,因此本實驗的目的在於提升超導體的機械性質,使超導體能應用於更大的磁場環境下。
  本實驗使用商用環氧樹脂及碳纖維被覆於超導體上,藉由外在包覆的方式來提升超導體的機械性質:在大氣下塗膠時,樹脂與塊材的接合情形不佳;於真空狀態下塗膠,可提升塊材與樹脂及碳纖維的接合力。
  對於未被覆前的塊材,原始塊材尺寸較大時,燒結時塊材內部不均勻的收縮導致孔洞的聚集,導致強度下降;低溫下(77K)塊材各試片間的彎曲強度差異較大,就平均而言約為常溫下的1.4倍,但彎曲模數卻較常溫為低。
  在常溫下被覆樹脂對塊材的機械強度無明顯幫助,但卻大幅影響塊材的彎曲模數;在低溫時,若能改善塊材與樹脂的接合,被覆樹脂應能有效提高超導體的強度。
  被覆碳纖維的試片彎曲強度最大,而由於碳纖維具有方向性,當被覆碳纖維方向平行於塊材受力方向時,彎曲強度提升的幅度最大;低溫下被覆碳纖維試片的彎曲強度達253.8MPa,為未被覆塊材低溫強度的2.4倍,但在應力應變圖中有數個數據振盪的區域,顯示此時塊材與樹脂或樹脂與碳纖維已開始脫離。
  無論在室溫或低溫下,彎曲模數的大小依序為:未被覆塊材>被覆碳纖維試片>被覆樹脂試片。
英文摘要   There were cracks and voids exist in the single grained superconductors as growth and annealing process due to its difference in thermal expansion coefficients and thermal stresses. In practice, the Lorentz force resulting from the interaction between the current inside the superconductors and the external field results in strong stresses. The superconductors usually fractured when the external magnetic field exceeds 10 Tesla because of the huge stresses. The purpose of this experiment is to enhance the mechanical properties of YBCO-superconductors and capable of high external field.
  In this experiment, the improvement of the mechanical properties of YBCO-superconductors is fulfilled by coating the commercial resins and carbon fabrics. When the coating process was operated in the atmosphere, the binding strength between the resins and the superconductor was poor. However, the operation in vacuum will enhance the binding strength.
  For the un-coated samples, diminished flexural strength reveals while the size of the bulks are larger than the other small ones because of the un-uniform shrinkages occurring inside them. The flexural strength of the samples at 77K is about 140% of that at 300K, but the flexural modulus at low temperature is lower than that of high temperature.
  At room temperature, coating resin on bulks was not good for samples at flexural strength, but decreases the flexural modulus. At low temperature, if we can improve the binding strength of the resin and the bulk, coating resin should be good for the strength of YBCO.
  The highest flexural strength was obtained by coating the CF-coatings on the samples. Because the carbon fabrics have anisotropism, as the direction of the carbon fabrics are parallel to the external force, the resulting strength of the sample is the highest. At 77K, the flexural strength of the samples with CF-coatings reaches 253.8MPa, which is about 240% of that of the un-coated ones. Some oscillations were observed on the stress vs. strain curve, it means that some disjoint appeared between the bulk and the resin or between the resin and the carbon fabrics.
  The samples at both room temperature and low temperature, the sequence of flexural modulus was in the following sequence of the un-coated samples, CF-coatings, and then the ones with resin-coatings.
論文目次 摘 要 I
Abstract II
目 錄 IV
圖 目 錄 VII
表 目 錄 XI
第一章 緒論 1
1-1 前言 1
1-2 實驗目的 2
第二章 理論基礎與文獻回顧 3
2-1 超導體的機械性質及所承受的應力 3
2-1.1 超導體的機械性質[1,2] 3
2-1.1.1 抗拉強度 3
2-1.1.2 抗壓強度 3
2-1.1.3 抗折強度 3
2-1.2 超導體在長晶過程所承受應力[3] 4
2-1.3 磁場對超導體的破壞[4] 5
2-2 超導體表面裂縫及孔洞分佈型態 8
2-2.1 a-b平面裂縫生成原因[5] 8
2-2.2 c軸裂縫生成原因[6] 9
2-2.3 表面孔洞分佈型態[7,3] 9
2-3 環氧樹脂及碳纖維的基本性質 10
2-3.1 環氧樹脂的基本性質[8] 10
2-3.2 環氧樹脂與硬化劑的反應機構[9] 10
2-3.3 碳纖維的歷史[10,11,12] 11
2-3.4 碳纖維的編織[12] 11
2-3.5 碳纖維的優點及應用[12] 11
2-4 包覆環氧樹脂與碳纖維對機械性質的改善 12
2-4.1 超導塊材被覆樹脂方式[13,14] 12
2-4.2 被覆樹脂與碳纖維對於塊材機械性質的影響
12
2-4.2.1 彎曲強度[15] 12
2-4.2.2 拉伸強度[16] 13
2-4.3 被覆樹脂及碳纖維對於塊材超導性質的影響
13
2-4.3.1 施加反覆磁場對超導體造成的破壞[17] 13
2-4.3.2 現今YBCO超導體可擄獲的最大磁場[14] 14
第三章 實驗步驟 35
3-1 實驗材料 35
3-2 實驗步驟 35
3-2.1 塊材前處理 35
3-2.2 塗膠前塊材表面觀察 36
3-2.3 塊材塗佈樹脂方式 36
3-2.3.1 在大氣下塗膠 36
3-2.3.2 真空包裝機塗膠步驟 36
3-2.4 塊材包覆碳纖維布方式 37
3-3 機械性質分析 37
3-3.1 常溫下的彎曲強度 37
3-3.2 低溫下的彎曲強度 37
3-4 儀器設備 38
3-5 試片條件 39
第四章 結果與討論 51
4-1 樹脂與塊材間的界面觀察 51
4-1.1 塊材的表面觀察 51
4-1.2 塊材被覆樹脂方式 51
4-1.2.1 實驗初期 51
4-1.2.2 在真空狀態下被覆樹脂 51
4-1.3 樹脂與塊材間的界面觀察 52
4-1.3.1 塊材與樹脂的表面接合情形 52
4-1.3.2 樹脂填入孔洞情形 53
4-1.3.3 樹脂滲入塊材深度 53
4-1.3.4 實驗室自製塊材與Murakami使用塊材橫截面的比較 53
4-2 三點彎曲試驗 62
4-2.1 試片尺寸對受力方向的影響 62
4-2.2 試片粗度的影響 62
4-2.3 數據的校正方式 63
4-3 常溫下超導體YBCO的機械性質 65
4-3.1 不同尺寸塊材的強度 65
4-3.2 被覆樹脂方式對於試片強度的影響 66
4-3.2.1 被覆樹脂試片 66
4-3.2.2 被覆碳纖維試片 67
4-3.3 被覆樹脂對於試片強度的影響 73
4-3.4 樹脂含量與碳纖維方向對於試片強度的影響
79
4-3.5 與Murakami的實驗相比較[15] 86
4-3.6 綜合比較 86
4-4 低溫下(77K)超導體YBCO的機械性質 91
4-4.1 未被覆的塊材強度 91
4-4.2 被覆樹脂的試片強度 91
4-4.3 被覆碳纖維的試片強度 92
4-4.4 應變值的校正 97
4-4.5 與Murakami的實驗相比較[15] 100
4-4.6 綜合比較 100
第五章 結論 106
參考文獻 108

參考文獻 1. 汪建民主編, 陶瓷技術手冊, 中華民國粉末冶金協會、中華民國產業科技發展協進會出版, 88年八月再版, 第七章 陶瓷材料機械特性及檢測。
2. F. Yu, K. W. White, R. Meng, ‘Mechanical characterization of top-seeded melt-textured YBa2Cu3O7-δ single crystal’, Physica C 276(1997) 295-308.

3. D. Isfort, X. Chaud, R. Tournier, G. Kapelski, ‘Cracking and oxygenation of YBaCuO bulk superconductors application to c-axis elements for current limitation’ Physica C 390(2003) 341-355.
4. Y. Ren, R. Weinstein, J. Liu, R.P. Sawh, C. Foster, ‘Damage caused by magnetic pressure at high trapped field in quasi-permanent magnets composed of melt-textured Y-Ba-Cu-O superconductor’, Physica C 251(1995) 15-26.
5. P. Diko, and G. Krabbes, ‘Macro-cracking in melt-grown YBaCuO superconductor induced by surface oxygenation’, Supercond. Sci. Technol. 16(2003) 90-93.
6. P. Diko, G. Krabbes, Physica C 399(2003) 151-157.
7. C. Leblond, I. Monot, J. Provost, G. Desgardin, ‘Formation of c-macrocracks during oxygenation of TSMG YBa2Cu3O7/Y2BaCuO5 single-grain superconductors’, Physica C 311(1999) 211-222.
8. C. P. Wong edited, ‘Polymers for electronic and photonic applications’, Academic press, INC. Application of epoxy resins in electronics.
9. West system, http://www.westsystem.com/.
10. 大谷杉郎、大谷朝男共著, 賴耿陽翻譯, 碳纖維材料入門, 復漢出版, 89年二月出版, 第四章 碳纖維的歷史。
11. 強化塑膠/複合材料特別技術講習會資料專輯, 中華民國玻璃纖維強化塑膠技術協進會, 民國72年八月, 第一部份 碳素纖維之開發經過及需要動向。
12. 郭文雄教授, 逢甲大學航空工程系 複合材料零組件, http://www.aero.fcu.edu.tw/media/manufacture.html.
13. M. Tomita, M. Murakami, K. Itoh, and H. Wada, ‘Mechanical properties and field trapping ability of bulk superconductors with resin impregnation’, Supercond. Sci. Technol. 17(2004) 78-82.
14. M. Tomita, and M. Murakami, ‘High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29K’, Nature, Vol. 421 (2003) 517-520.
15. M. Tomita, and M. Murakami, ‘Mechanical properties of bulk superconductors with resin impregnation’, Supercond. Sci. Technol. 15(2002) 808-812.
16. M. Tomita, M. Murakami, and K Yoneda, ‘Improvements in the mechanical properties of bulk YBCO superconductors with carbon fibre fabrics’, Supercond. Sci. Technol. 15 (2002) 803–807
17. M. Tomita, M. Murakami, K. Sawa, Y. Tachi, ‘Effect of resin impregnation on trapped field and levitation force of large-grain bulk Y-Ba-Cu-O supercondcors’, Physica C 357-360(2001) 690-693
18. V. R. Todt, S. Sengupta, K. C. goretta, Y.L. Chen, and D. J. Miller, IEEE Transactions on applied superconductivity, Vol. 5, NO. 2(1995) 1623-1626.
19. ASTM international, Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, D790-03.
20. N. Sakai, K. Ogasawara, K. Inoue, D. Ishihara, and M. Murakami, IEEE Transactions on applied superconductivity, Vol. 11, NO. 1(2001) 3509-3512.
21. 蔡丕椿, 蔡明雄, 陳文照, 廖金喜編譯, D. R. Askeland原著, 材料科學與工程, 全華科技圖書出版, 85年五月初版, 第十六章 複合材料。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-07-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-07-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw