進階搜尋


 
系統識別號 U0026-0812200911113196
論文名稱(中文) 利用原子力顯微鏡研究自我聚集單分子層間的作用力
論文名稱(英文) The studies of intermolecular force between self-assembled monolayers by atomic force microscopy
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 92
學期 2
出版年 93
研究生(中文) 沈靖雄
研究生(英文) Shen Chinghsiun
學號 N3691419
學位類別 碩士
語文別 中文
論文頁數 114頁
口試委員 指導教授-林睿哲
口試委員-陳炳宏
口試委員-張鑑祥
口試委員-李玉郎
口試委員-郭人鳳
中文關鍵字 化學力顯微鏡  原子力顯微鏡  單一表面官能基  分子間作用力  自我聚集單分子層 
英文關鍵字 intermolecular force  atomic force microsco  chemical force microscopy  self-assembled monolayers  solvent exclusion 
學科別分類
中文摘要   原子力顯微鏡在量測分子作用力上,提供了一個有效的工具。因為可以量測到微小的分子作用力,另還具有一項優點即是很容易改變探針上的化學性質,增加化學靈敏度,而這也稱為化學力顯微鏡。而長鏈的烷基硫醇吸附在金的表面形成緻密排列且具方向性的自我聚集單分子層,可以提供一多樣的末端結構與表面性質,利用其單一表面官能基的特性來探討各種不同官能基間的作用力。本實驗中,選用末端官能基為CH3、COOH、OH的自我聚集單分子層,利用化學力顯微鏡量測各官能基在乙醇及去離子水中的作用力。
  由靜態接觸角及ESCA的數據,確定在基材表面的自我聚集單分子層為一緻密排列。由SEM的圖發現,探針在鍍完一層金屬薄膜後,並沒因為殘留的熱應力而彎曲;且彈性係數也比未鍍時的探針還大。在二次水中,-CH3/-CH3>-CH3/-COOH>-COOH/-COOH>-OH/-OH,表示在水中疏水基作用力 (hydrophobic interaction)比氫鍵(hydrogen bond)及親水基作用力 (hydrophilic interaction)還大,這是因為溶劑排除效應。在乙醇中,-OH/-OH≧-CH3/-CH3>-COOH/-COOH>-CH3/-COOH,而溶劑排除效應並不能完全的解釋吸附力。而由JKR theory,可應用在利用AFM所測量到的作用力數據,求得無法利用接觸角所量得的表面自由能、求出作用面積及參與作用的分子數目。
英文摘要   Intermolecular force plays important roles in material science and biology. The key interactions controlling these phenomena can be broken down into fundamental types of chemical forces. The long-chain alkanethiol, HS(CH2)nX with variant terminal functionalities and surface properties can chemically adsorb from solution onto gold surface spontaneously to form a densely packed, well-oriented self-assembled monolayers (SAMs). This technique can offer a well-defined surface to study the intermolecular force between variant functional group. Atomic force microscopy (AFM) is a powerful tool for probing intermolecular interactions. It can resolve forces with piconewton sensitivity and has a spatial resolution of nanometers. AFM has another advantage that the tips can be easily functionalized to enhance chemically sensitivity. This ability to discriminate between chemically distinct functional groups has led us to name this variation of AFM chemical force microscopy (CFM).
  In this experiment, CFM was utilized to measure intermolecular force between Au substrates and Au-coated AFM tips, each was coated with alkanethiol SAMs of HS(CH2)nX,where the X terminations include –CH3、-COOH、-OH. The CFM measurements were performed within ethanol and DI water. From static contact angle and ESCA analysis, a densely packed monolayer of SAM was formed. From SEM micrograph, the tips coated with a thin Au layer were not bent caused by likely residual thermal stress. The resonant frequency of the coated tips shift to a smaller than the bare tips, while the spring constant of coated tip becomes larger than bare tips. In DI water, the relative order of intermolecular force between the tip and substrate follows:-CH3/-CH3>-CH3/-COOH>-COOH/-COOH>-OH/-OH. And it means the hydrophobic interaction is greater than hydrogen bond and hydrophilic interaction due to “Solvent Exclusion” effect. In ethanol, the relative order range between the tip and substrate follows:-OH/-OH≧-CH3/-CH3>-COOH/-COOH>-CH3/-COOH, but “Solvent Exclusion” effect can not entirely account for adhesion values determined in ethanol and this might be explained by the microfludic condition of alkanethiol terminal functionality within the ethanol. JKR theory can be applied to describe the measured adhesion force data. It can measure the surface free energy and interfacial free energy which contact angle can not measure, the effective contact area and the amount contacting molecules under adhesion.
論文目次 目 錄 頁數
中文摘要…………………………………………………… I
英文摘要…………………………………………………… III
目 錄………………………………………………… VI
表 目 錄…………………………………………………… X
圖 目 錄…………………………………………………… XII
主 文
第一章、前言……………………………………………… 1
第二章、掃描式探針顯微鏡簡介………………………… 3
2.1、顯微鏡沿革…………………………………………… 3
2.2、掃描穿隧顯微鏡………………………………………… 5
2.3、原子力顯微鏡…………………………………………… 6
2.4、原子力顯微鏡的硬體架構……………………………… 7
2.5、操作模式……………………………………………… 9
2.5.1、接觸式原子力顯微鏡……………………………… 10
2.5.2、非接觸式原子力顯微鏡……………………………… 11
2.5.3、輕敲式原子力顯微鏡………………………………… 12
2.6、作用力與掃描器距離之關係圖-力譜圖 (Force curve)… 13
第三章、文獻回顧…………………………………………… 25
3.1有機單分子層的簡介…………………………………… 25
3.1.1 Langmuir-Blodgett Films………………………………25
3.1.2 自我聚集性單分子層(Self Assembled Monolayers,SAMs)……………………………………………26
3.2分子間作用力的探討…………………………………… 30
3.2.1簡介………………………………………………… 30
3.2.2探針的改質……………………………………………… 32
3.2.3實驗環境………………………………………………… 32
3.2.4官能基間的分子作用力………………………………… 34
3.3 探針彈性係數的量測…………………………………… 39
第四章、實驗………………………………………………… 53
4.1實驗藥品…………………………………………………… 53
4.2實驗步驟…………………………………………………… 55
4.2.2自我聚集單分子層(Self Assembled Monolayers)的製備 55
4.2.3探針改質………………………………………………… 56
4.2.4彈性係數的量測………………………………………… 57
4.2.5作用力量測……………………………………………… 58
4.2.6接觸角量測……………………………………………… 59
第五章 反應及分析儀器原理與其應用……………………… 60
5.1實驗儀器原理……………………………………………… 60
5.1.1 真空蒸鍍法……………………………………………… 60
5.2 分析儀器原理與其應用………………………………… 61
5.2.1簡介……………………………………………………… 61
5.2.2.接觸角(Contact angle)……………………………………63
5.2.3化學分析電子光譜儀(X-ray photoelectron spectroscopy, XPS)……………………………………………… 64
5.2.4掃瞄式電子顯微鏡(Scanning Electron Microscope,SEM)………………………………………………66
第六章 結果與討論…………………………………………… 71
6.1 探針的彈性係數及探針的改質………………………… 71
6.2 接觸角的量測…………………………………………… 72
6.3 ESCA (XPS)的量測……………………………………… 74
6.4 各官能基間作用力的量測……………………………… 74
6.4.1 各官能基間的Force Curve…………………………… 74
6.4.2 各官能基間作用力的Histogram……………………… 76
第七章 結論與未來展望…………………………………… 105
參考文獻……………………………………………………… 108
參考文獻 1. G. Binning, H. Rohrer, Ch. Gerber, E. Weibel. ”Surface studies by scanning tunneling microscopy”, Physical Review Letters, 49, 57-61 (1982)
2. G. Binning,C. F. Quate ”Atomic Force Microscopy”, Physical Review Letters, 56, 930-933 (1986)
3. 成大化工系掃描試探針簡易操作手冊
4. DI training BOOK
5. 材料分析,汪建民,中國材料科學學會發行,民國90
6. 微米及奈米材料的表面鑑定-原子力顯微鏡的應用,汪海寧,國立中正大學,化學研究所碩士論文,民國87年
7. A Practical Guide to Scanning Probe Microscopy (Thermomicroscopes),
8. A. Ulman, “Characterization of Organic Thin Films”, Butterworth-Heinemann, Boston, USA (1995)
9. R.G. Nuzzo and D.L. Allara, “Adsorption of bifunctional organic disulfides on gold surfaces”, Journal of American Chemical Society, 105, 4481-4483 (1983)
10. A. Ulman, ”An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly” San Diego (1991)
11. A. Ulman, “Formation and structure of self-assembled monolayers”, Chemical Reviews, 96, 1533-1554 (1996)
12. C.D. Bain, E.B. Troughton, Yu-Tai Tao, J. Evall, G.M. Whitesides, and R.G. Nuzzo, “Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold”, Journal of American Chemical Society, 111, 321-335 (1989)
13. E.B. Troughton, C.D. Bain, G.M. Whitesides, R.G. Nuzzo, “Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: Structure, properties, and reactivity of constituent functional groups”, Langmuir, 4, 365-385 (1988)
14. C.D. Bain, H.A. Biebuyck, and G.M. Whitesides, ”Comparison of self-assembled monolayers on gold: coadsorption of thiols and disulfides”, Langmuir, 5, 723-727 (1989)
15. T. Smith, “ The hydrophilic nature of a clean gold surface”, Journal of Colloid and Interface Science, 75, 51-55 (1980)
16. P.E. Laibinis and G.M. Whitesides, “ω-terminated alkanethiolate monolayers on surfaces of copper, sliver and gold have similar wettabilities”, Journal of American Chemical Society, 114, 1990-1995 (1995)
17. P.E. Laibinis, G.M. Whitesides, D.L. Aiiara, Yu-Tai Tao, A.N. Parikh and R.G. Nuzzo, “Comparison of the structures and wetting properties of self-assembled monolayers of n-Alkanethiols on the coinage metal surfaces, Cu, Ag, Au”, Journal of American Chemical Society, 113, 7152-7162 (1991)
18. J. Israelachvili, “Solvation forces and liquid structure, as probed by direct force measurements”, Accounts of chemical research, 20, 415-421 (1987)
19. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles”, Optics Letters, 11, 288-290 (1986)
20. S.A. Joyce and J.E. Huston, “A new force sensor incorporating force-feedback control for interfacial force microscopy”, Review of Scientific Instruments, 62, 710-715 (1991)
21. W.A. Ducker and T.J. Senden, “Direct measurement of colloidal forces using an atomic force microscope”, Nature, 33, 239-241 (1991)
22. S. Biggs, “Steric and bridging forces between surfaces bearing absorbed polymer:an atomic force microscopy study”, Langmuir, 11, 156-162 (1995)
23. C.D. Frisbe, C.M. Liber, “Functional group imaging by chemical force microscopy”, Science, 2071-2074 (1994)
24. S. Akari, W. Schrepp, “Chemical Imaging by Chemical force Microscopy” , Advance material, 549-551 (1995)
25. A. Noy, C.M. Liber, “Chemical Force Microscopy”, Annual review of material science, 27, 381-421 (1997)
26. J. L. Parker and P. M. Claesson, “Direct measurement of the attraction between solvophobic surfaces in ethylene glycol and mixtures with water”, Langmuir, 8, 757-759 (1992)
27. S. Biggs and P. Mulvaney, “Measurement of the forces between gold surfaces in water by atomic force microscopy”, Journal of Chemical Physics, 100, 8501-8505 (1994)
28. N. A. Noy, C. M. Liber, “Chemical force Microscopy : exploiting chemically - modified tips to quantified adhesion , friction , and functional group distribution in molecular assemblies”, Journal of American Chemical Society, 117, 7943-7951 (1995)
29. D. Vezenov, C. M. Liber, “Force titration and ionization state sensitivity imaging of functional groups in aqueous solutions by Chemical Force Microscpy”, Journal of American Chemical Society, 119, 2006-2015 (1997)
30. E. W. van der Vegte, G. Hadziioannou, “Scanning force microscopy with chemical specificity: An extensive study of chemical specific tip-surface interactions and the chemical imaging of surface functional groups”, Langmuir, 13, 4357-4368 (1997)
31. S. K. Sinniah, J. E. Reutt-Robey, “Solvent exclusion and chemical contrast in Scanning Force Microscopy”, Journal of American Chemical Society, 118, 8925-5931 (1996)
32. T. Nakagawa, S. Ozaki, “Discriminating molecular length of chemically adsorbed Molecules using Atomic Force Microscopy having a tip covered with Sensor molecules (An Atomic Force Microscope having chemical sensing function)”, JAPANESE JOURNAL OF APPLIED PHYSICS, 32, L294-L296 (1993)
33. T. Nakagawa, T. Kirimizawa, “Atomic force microscope for Chemical sensing”, Journal of Vacuum Science Technology , 12, 2215-2217 (1994)
34. J. E. Headrick and C. L. Berrie, “Alternative method for fabricating chemically functionalized AFM tips:silane Modification of HF-Treated Si3N4 Probes”, Langmuir, 20 , 4124-4131 (2004)
35. T. Nakagawa, “Sensing molecular density of molecular from Fluoroalkyltrichlorosilane using Atomic Force Microscope having a Tip modified with Fluirialkyltrichlorosilane Molecules”, JAPANESE JOURNAL OF APPLIED PHYSICS, 36, L162-L165 (1997)
36. K. Hayashi, O. Takai, “Force microscopy contrasts due to adhesion force difference between organosilane self-assembled monolayers”,Applied Surface Science, 188, 513-518 (2002)
37. T. Ito, Y. Umeazwa, “Modification of silicon nitride tips with Trichlorosilane Self-assembled Monolayers(SAM) for Chemical Force Microscopy”, Langmuir, 13, 4323-4332 (1997)
38. I. Yu. Sokolov, G. S. Henderson, F. J. Wicks and G. A. Ozins, “Improved atomic force microscopy resolution using electric double layer”, Applied Physics Letters, 70, 844-846 (1997)
39. J. D. Green, M. T. McDermott and M. C. Porter, “Nanometer-Scale mapping of chemically distinct domains at well-defined organic interfaces using friction force microscopy”,Journal of Physical Chemistry, 99, 10960-10965 (1995)
40. S. E. Creager and J. Clarke, “Contact-Angle Titrations of mixed ω-mercaptoalkanoic acid/alkanethiol monolayers on gold. reactive vs nonactive spreading,and chain length effects on surface pKa values”, Lamgmuir, 10, 3675-3683 (1994)
41. E. W. van der Vegte and G. Hadziioannou, “Acid –Base properties and the chemical imaging of surface-bound functional groups Studied with Scanning Force Microscopy”, Journal Physical Chemistry B, 101, 9563-9569 (1997)
42. D. A. Smith, J. Zhang, M. L. Wallwork and M. Wong, “The effect of electrolyte concentration on the chemical force titration behavior of ω-Functionalized SAMs:evidence for the formation of strong ionic hydrogen bonds”, Journal of Physical Chemistry B, 104, 8862-8870 (2000)
43. H. X. HE, C. Z. Li, and Z. F. Liu, “Force titration of a carboxylic acid terminated Self-Assembled Monolayeds using chemical force microscopy”, Molecular Crystal and Liquid Crystal , 294, 99-102 (1997)
44. H. Zhang, H. X. He, and Z. F. Liu, “Force titration of amino group-terminated Self Assembled Monolayers of 4-aminothiophenol on gold using chemical force microscopy”, Thin Solid Films, 327-329, 778-780 (1998)
45. H. Zhang, H. X. He, and Z. F. Liu, “Force titration of amino group-terminated Self Assembled Monolayers using chemical force microscopy”, Applied Physics A, 66, S269-S271 (1998)
46. H. Zhang, H. X. He, T. Zhu and Z. F. Liu, “Stud on the surface dissociation properties of 6-(10-mercaptodecaoxyl)quinoline Self Assembled Monolayers on gold by Chemical Force Titration”, Materials Science and Enginnerung C, 8-9, 191-194 (1999)
47. T. J. Senden and W. A. Duker, “Experimental determination of spring constants in AFM”, Langmuir, 10, 1003-1004 (1994)
48. A. Torii, M. Sasaki, and S. Okuma, “A method for determining the spring constant of cantilevers for atomic force microscopy”, Measurement Science and Technology, 7, 179-187 (1996)
49. J. L. Huter and J. Bechhoefer, “Calibration of Atomic Force Microscope Tips”, Review of Scientific instruments, 64, 1868-1872 (1993)
50. J. P. Cleveland and P. K. Hansma, “A nondestructive method for determining the spring constant of cantilevers for SFM”, Review of Scientific instruments, 64, 403-405 (1993)
51. C. T. Gibson and C. Abell, “A nondestructive techniques for determining the spring constant of AFM cantilevers”, Review of Scientific instruments, 72, 2340-2343 (2001)
52. J. E. Sader, “Parallel beam approximation for V-shaped AFM cantilevers”, Review of Scientific instruments, 66, 4583-4587 (1995)
53. J. E. Sader and L. White, “Theoretical analysis of the static deflection of plates for AFM application”, Journal of Applied Physics, 74, 1-9 (1993)
54. J. Neumeister and W. A. Ducker, “Lateral, normal, and longitudunal spring constants of atomic force microscopy cantilevers”, Review of Scientific instruments, 65, 2527-2531 (1994)
55. 賴耿陽 編譯, “薄膜製作工程學”,復漢出版社,1987
56. J. D. Andrade, “Surface and interfacial aspects of biomedical polymers volume 1 Surface chemistry and physics ”, Plenum press, New york (1992)
57. G. E. McGuire, “Instrumental methods in ESCA”, in Applied Electron Spectroscopy for Chemical Analysis, Wiley, New York, 1-18 (1982)
58. B. D. Ratner and D. G. Castner, “Electron spectroscopy for chemical analysis in surface analysis techniques and application”, Wiley, New York (1992)
59. B. D. Ratner, “ Characterization of biomaterial surfaces ”, Cardiovasc Pathology, 3, 87S-100S (1993)
60. K. L. Johnson, K. Kendall and A. D. Roberts, “Surface energy and the contact of elastic solids”, Proceedings of the Royal Society of London A, 324, 301-313 (1971)
61. 莊文喜,“各種不同官能基的自我聚集單分子層之表面性質及血液相容性之探討”,國立成功大學化學工程系碩士論文,民國86年
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2009-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2009-07-23起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw