進階搜尋


 
系統識別號 U0026-0812200911111045
論文名稱(中文) 過多零事件之成對伯努力資料在不同模型下比較之研究
論文名稱(英文) On the comparison of models for paired Bernoulli data with extra zeros
校院名稱 成功大學
系所名稱(中) 統計學系碩博士班
系所名稱(英) Department of Statistics
學年度 92
學期 2
出版年 93
研究生(中文) 周育慧
研究生(英文) Yu-Hui Chou
電子信箱 mmoolly2001@yahoo.com.tw
學號 r2691401
學位類別 碩士
語文別 中文
論文頁數 47頁
口試委員 口試委員-劉仁沛
指導教授-馬瀰嘉
口試委員-陳俞成
中文關鍵字 角膜破皮  名目反應之邏輯值模型  角膜內層重塑術  順序型反應之累積邏輯值模型  誇大零事件發生機率之二項模型  邏輯斯模型  廣義估計方程式 
英文關鍵字 laser in situ keratomileusis  intraoperative epithelial defect  proportional odds model  logistic model  generalized estimating equations  multicategorical logit model  zero-inflated binomial model 
學科別分類
中文摘要   對於離散計數資料,在生物醫學領域中,時常會有零事件發生次數過多的問題。本研究透過一筆接受視力矯正角膜內層重塑術(LASIK)的患者資料,來探討影響術後角膜破皮的危險因子。此資料的反應變數為二元反應變數,有零事件發生次數過多的現象,也就是絕大部份的術後患者是沒有角膜破皮的情況,在當今外科手術極為發達的時代,這種資料形態是很常見的。本文利用誇大零事件發生機率之二項模型,來分析此種二元反應變數有過多零事件發生的資料,分別利用傳統邏輯斯模型、廣義估計方程式、名目反應之邏輯值模型及順序型反應之累積邏輯值模型,來分析此筆資料。最後探討這五種統計方法之優缺點並用此資料來做比較,以及討論這些統計方法的使用時機。
英文摘要   For frequency counts, the situation of extra zeros often occurs in biomedical data. This is demonstrated with count data from a surgical treatment of refractive error which determined the risk factors for an epithelial defect during laser in situ keratomileusis (LASIK). The response variable of this data is binary. It was found that the data exhibited an excess of zeros, in the context that the majority of patients did not suffer intraoperative epithelial defect. The development of surgical treatment is very fast at the time being, count data with extra zeros are quite typical. We use a zero-inflated binomial model to analyze such binary data with extra zeros. In addition, the logistic model, generalized estimating equations, multicategorical logit model and proportional odds model are utilized to analyze this real data. Next, the advantage and defect of different models are compared by the real data and the usage opportunity of above statistical methods is discussed.
論文目次 第一章 緒論 ………………………………………………………… 1
第二章 準分子雷射屈光原位層狀重塑術資料介紹 ……………… 3
2.1 LASIK手術相關文獻探討 …………………………… 4
2.2 資料來源 …………………………………………… 5
2.3 變數描述 ……………………………………………… 5
第三章 二元及多元反應之模型 …………………………………... 9
3.1 邏輯斯迴歸模型 ……………………………………… 9
3.2 名目反應之邏輯值模型—基線類組邏輯值 …………12
3.3 順序型反應之累積邏輯值模型 ………………………14
3.3.1 累積邏輯值 ……………………………………….14
3.3.2 比例勝算模型 …………………………………….15
第四章 廣義估計方程式及誇大零事件發生機率之二項模型…… 18
4.1 廣義估計方程式 ………………………………………18
4.2 誇大零事件發生機率之二項模型 ……………………24
第五章 實例分析與統計模擬 …………………………………….. 30
5.1 LASIK資料初步分析 ………………………………….30
5.2 五種模型之模型選擇 …………………………………34
5.3 五種模型比較分析 ……………………………………37
5.4 統計模擬 ………………………………………………41
第六章 結論 ………………………………………………………. 43
參考文獻 …………………………………………………………… 45
參考文獻 Agresti, A. (1996). An introduction to categorical data analysis. New York: Wiley.

Agresti, A. (2002). Categorical data analysis. New York: Wiley.

Azar, D., Scally, A., Hannush, S., Soukiasian, S. and Terry, M. (2003). Epithelial-defect-masquerade syndrome after laser in situ keratomileusis characteristic clinical findings and visual outcomes. Journal of Cataract Refract Surg 29, 2358-2365.

Bashour, M. (2002). Risk factors for epithelial erosions in laser in situ keratomileusis. Journal of Cataract Refract Surg 28, 1780-1788.

Bohning, D., Dietz, E. and Schlattmann, P. (1999). The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology. Journal of Royal Statistical Society A. 162, 195-209.

Bridges, R. (2001). What is LASIK? Journal of Cataract Refract Surg 27, 339-340.

Cameron, C. and Trivedi, P. (1998). Regression analysis of count data. Cambridge, MA, Cambridge University Press.

Collett, D. (1991). Modelling Binary Data. London: Chapman & Hall.

Dean, C. B. (1992). Testing for overdispersion in Poisson and Binomial regression models. Journal of the American Statistical Association 87, 451-457.

Fitzmaurice, G. M. and Laird, N. M. (1993). A likelihood-based method for analyzing longitudinal binary responses. Biometrika 80, 140-151.

Hall, D. (2000). Zero-Inflated Poisson and Binomial regression with random effects: a case study. Biometrics 56, 1030-1039.

Hall, D. and Berenhaut, K. (2002). Score tests for heterogeneity and overdispersion in zero-inflated Poisson and binomial regression models. The Canadian Journal of Statistics 30, 1-16.

Heibron, D. C. (1994). Zero-altered and other regression models for count data with added zeros. Biometrical Journal 36, 531-547.

Lambert, D. (1992). Zero-Inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34, 1-13.

Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13-22.

Maldonado-Bas, A. and Onnis, R. (1998) Results of laser in situ keratomileusis in different degrees of myopia. Ophthalmology 105, 606-611.

McCullagh, P. and J. A. Nelder. (1989). Generalized Linear Models. London: Chapman & Hall.

Mullahy, J. (1986). Specification and Testing of Some Modified Count Data Models. Journal of Econometrics 33, 341-365.

Poortema, K. (1999). On modeling overdispersion of counts. Statistica Neerlandica 53, 5-20.

Ridout, M., Demetrio, C. and Hinde J. (1998). Models for count data with many zeros. International Biometric Conference.

Tekwani, N. and Huang, D. (2002). Risk factors for intraoperative epithelial defect in laser in-situ keratomileusis. American Journal of Ophthalmology 134, 311-316.

Van Gelder, R. and Pepose, J. (2003). Correlation of visual and refractive outcomes between eyes after same-session bilateral laser in situ keratomileusis surgery. American Journal of Ophthalmology 135, 577-583.

Van Iersel, M., Oetting R. and Hall, D. (2000). Imidacloprid applications by subirrigation for control of silverleaf whitefly (Homoptera: Aleyrodidae) on Poinsettia. Entomological Society of America 93, 813-819.

Vieira, A. M. C., Hinde, J. P. and Demetrio, G. B. (2000). Zero-inflated proportion data models applied to a biological control assay. Journal of Applied Statistics 27, 373-389.

Ware, J. H. (1985). Linear models for the analysis of longitudinal studies. The American Statistician 39, 95-101.

Yau, K. W. and Lee, A. (2001). Zero-inflated Poisson regression with random effects to evaluate an occupational injury prevention programme. Statistic in Medicine 20, 2907-2920.

Zeger, S. L. and Liang, K. Y. (1986). Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42, 121-130.

黃春美(1996),“長期資料分析中迴歸係數估計量的小樣本行為”,國立成功大學統計研究所碩士論文,1996年6月。

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-07-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-07-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw