進階搜尋


 
系統識別號 U0026-0812200911110637
論文名稱(中文) 整合氣動式微閥門與微幫浦之多功能生醫微流體檢測晶片及其疾病偵測之應用
論文名稱(英文) Microfluidic Chips Integrated with Pneumatic Microvalves and Micropumps and Their Applications on Disease Detection
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 92
學期 2
出版年 93
研究生(中文) 王志豪
研究生(英文) Chih-Hao Wang
學號 n9691156
學位類別 碩士
語文別 中文
論文頁數 102頁
口試委員 口試委員-曾繁根
口試委員-蔡美玲
口試委員-陳淑慧
指導教授-李國賓
中文關鍵字 酵素免疫分析  蠕動式微幫浦  微機電系統軟式微影製程  疾病偵測  薄膜運動 
英文關鍵字 Peristaltic pumps  ELISA  Micro-valve  MEMS  Diseases diagnosis 
學科別分類
中文摘要   本研究基於薄膜運動造成微量樣本流體之流動的概念下,設計及製作一新式微氣動閥(Micro-pneumatic valve)及微氣動幫浦(Micro-pneumatic pump),並將微氣動閥及微氣動幫浦整合於多功能生微流體醫檢測晶片上,而操作系統包括檢測晶片、控制電路、電磁閥與外加氣壓源。透過此一檢測晶片可迅速執行檢測愛滋病毒(AIDS Virus, HIV 1/2)、B型肝炎(Hepatitis B Virus, HBV)、C型肝炎(Hepatitis C Virus, HCV)、白血球症(Human T-cell Lymphotrophic virus, HTLV)及梅毒(Syphilis)等五種疾病之偵測。

  本研究利用軟式微影(Soft lithography)製程技術,並以彈性聚合物PDMS(Polydimethylsiloxane)製作微管道及薄膜結構,藉由其軟韌特性,施以壓縮氣體驅使薄膜產生致動,單一薄膜致動便構成一微閥門結構。微氣動閥可阻絕微流體之流動,並避免不同微流體間之相互污染問題;而藉由控制電路造成數個微閥門作動之相位延遲而產生蠕動作用,以形成蠕動式微幫浦(Peristaltic micropumps),可做為微流體多方向之控制以及長距離之傳輸。本研究並提出一新式蜘蛛網型微幫浦之設計,最後,本研究並以C型肝炎進行酵素免疫分析(Enzyme-linked Immunosorbent Assay, ELISA)偵測,證明此一多功能生醫測晶片之實用價值。


英文摘要   The present study reports a microfluidic system using the concept of membrane-movement to design and fabricate micro-pneumatic values and pumps to form a multiple bio-sensing diagnostic chip. The automatic-bio-sampling system includes a micro-diagnostic chip fabricated by using MEMS (Micro-electro-mechanical-systems) technology and an automatic platform comprising a control circuit, a compressed air source and electromagnetic valve switches. The control circuit is used to regulate the electromagnetic valve switches, causing PDMS membranes to deflect pneumatically and generate valving and pumping effects. The micro-diagnostic chip allows speedy detection of five diseases, namely, AIDS virus (HIV 1/2), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell lymphotrophic virus (HTLV), and syphilis. While compared with large-scale systems, the new microfluidic system uses less samples and reagents and performs a fast diagnosis in an automatic format. Instead of using traditional pneumatic micro-pumps, the current study adopts a new design called “spider-web” pumps to increase the pumping rate, and more importantly, improve the uniformity of flow rates in multiple channels. Experimental data show that for multiple diseases diagnosis, the multi bio-sensing chips integrated with the micro-pneumatic valves and the peristaltic micropumps could successfully execute ELISA (Enzyme-linked immunosorbent assay) tests. Small amounts of samples and reagents could be injected into the diagnosis chips and parallel-process multiple disease detection automatically to avoid cross contamination. The development of the multi bio-sensing chips could provide a useful tool for bio-sensing and be crucial for micro-total-analysis system.


論文目次 第一章 緒論
1-1 前言 ……………………………………………… 1
1-2 生醫微機電系統 ………………………………… 2
1-3 研究動機與目的 ………………………………… 4
1-4 研究方法 ………………………………………… 6
1-5 文獻回顧 ………………………………………… 7
1-6 論文架構 ………………………………………… 11

第二章 晶片設計
2-1 檢測原理與檢測流程 …………………………… 13
2-1-1 檢測原理 ……………………………………… 13
2-1-2 檢測流程 ……………………………………… 15
2-2 晶片設計考量 …………………………………… 18
2-3 驅動方式 ………………………………………… 19
2-3-1 基本驅動原理 ………………………………… 19
2-3-2 驅動設計原則 ………………………………… 20
2-3-2-1 設計原則 …………………………………… 20
2-3-2-2 薄膜運動 …………………………………… 21
2-3-3 蜘蛛網型蠕動式微氣動幫浦 ………………… 21
2-3-4 控制系統設計 ………………………………… 22
2-4 材料選擇 ………………………………………… 23
2-5 製程及封裝 ……………………………………… 25

第三章 晶片製程
3-1 製作規劃 ………………………………………… 27
3-2 光罩製作 ………………………………………… 28
3-3 基本製程技術 …………………………………… 29
3-3-1 晶片清洗 ……………………………………… 29
3-2-2 微影製程 ……………………………………… 30
3-4 母模及玻璃基板製程 …………………………… 33
3-4-1 SU-8母模製作 ………………………………… 33
3-4-2 微電鑄母模製程 ……………………………… 35
3-4-3 玻璃基板製作 ………………………………… 36
3-5 微成形製程 ……………………………………… 38
3-5-1 PDMS複製模造 ………………………………… 38
3-5-2 微熱壓成形 …………………………………… 39
3-6 晶片封裝 ………………………………………… 41

第四章 結果與討論
4-1 材料測試 ………………………………………… 43
4-1-1 材料之親疏水性測試 ………………………… 43
4-1-2 對於不同材質之微幫浦流率測試 …………… 44
4-2 氣動式微閥門 …………………………………… 45
4-2-1 實驗架設 ……………………………………… 45
4-2-2 測試結果與討論 ……………………………… 46
4-3 氣動式微幫浦 …………………………………… 47
4-3-1 操作系統與實驗架設 ………………………… 47
4-3-2 測試結果與討論 ……………………………… 48
4-4 多功能生醫檢測晶片 …………………………… 50
4-4-1 檢測流程之耗時測試 ………………………… 50
4-4-2 C 型肝炎之實體測試及討論 ………………… 51

第五章 結論與未來展望
5-1 結論 ……………………………………………… 54
5-2 未來展望 ………………………………………… 56
參考文獻 [1]. H. Suzuki, “Microfabrication of chemical sensors and biosensors for environmental moitoring,” Materials Science and Engineering C, Vol. 12, pp.55-61, 2000.

[2]. M. Bao and W. Wang, “Future of microelectromechanical systems(MEMS),” Sensors and Actuators A: Physical, Vol. 50, pp. 135-141, 1996.

[3]. A. D. Romig, Jr., M. T. Dugger, and P. J. McWhorter, “Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability,” Acta Materialia, vol. 51, pp. 5837-5866,
2003.

[4]. P. Bergveld, “Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years,” Sensors and Actuators B: Chemical, Vol. 88, pp. 1-20, 2003.

[5]. B. Ziaie, A. Baldi, M. Lei, Y. Gu, and R. A. Siegel, “Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery,” Advanced Drug Delivery Reviews, Vol. 56, pp. 145-172, 2004.

[6]. P. Bergveld, “The future of biosensors,” Sensors and Actuators A: Physical, Vol. 56, pp. 65-73, 1996.

[7]. R. Raiteri, M. Grattarola, and R. Berger, “Micromechanics senses biomolecules,” Materials Today, Vol. 5, pp. 22-29, 2002.

[8]. R. S. Shawgo, A. C. R. Grayson, Y. Li, and M. J. Cima, “BioMEMS for drug delivery,” Current Opinion in Solid State and Materials Science, Vol. 6, pp. 329-334, 2002.

[9]. K. K. Jaln, “Biotechnological applications of lab-chips and microarrays,” Trends in Biotechnology, Vol. 18, pp. 278-280, 2000.

[10]. D. J. Graves, “Powerful tools for genetic analysis come of age,” Trends Biotechnol, Vol. 17, pp. 127-134, 1999.

[11]. C. B. Epstein and R. A. Butow, “Microarray technology-enchanced versatility, persistent challenge,” Current Opinion in Biotechnology, Vol. 11, pp. 36-41, 2000.

[12]. G. H. W. Sanders and A. Manz, “Chip-based Microsystems for genomic and proteomic analysis,” Trends in Analytical Chemistry, Vol. 19, pp. 364-378, 2000.

[13]. N. H. Chiem and D. J. Harrison, “Microchip systems for immunoassay: an integrated immunoreactor with electrophoretic separation for serum theophylline determination,” Clinical Chemistry, Vol. 44, pp. 591-598,
1998.

[14]. K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, and T. Kitamori, “Microchip-based chemical and biochemical analysis systems,” Journal of Chromatography A, Vol. 987, pp. 197-204, 2003.

[15]. A. C. R. Grayson, R. S. Shawgo, Y. Li, and M. J. Cima, “Electronic MEMS for triggered delivery,” Advanced Drug Delivery Reviews, Vol. 56, pp. 173-184, 2004.

[16]. M. R. Prausnitz, “Microneedles for transdermal drug delivery,” Advanced Drug Delivery Reviews, Vol. 56, pp. 581-587, 2004.

[17]. B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Advanced Drug Delivery Reviews, Vol. 55, pp. 349-377, 2003.

[18]. K. C. Young, H. M. Lien, C. C. Lin, T. T. Chang, G. B. Lee and S. H. Chen, “Microchip and capillary electrophoresis for quantitative analysis of hepatitis C virus based on RT-competitive PCR,” Special issue on miniaturization, Talanta, 2001.

[19]. J. G. Spencer, “Piezoelectric micropump with three valve working peristaltically,” Sensor and Actuators A: Physical, Vol. 21-23, pp. 203-206, 1990.

[20]. R. Zengerle, J. Ulrich, S. Kluge, M. Richter and A. Richter, “A bidirectional silicon micropump,” Sensors and Actuators A: Physical, Vol. 50, pp. 81-86, 1995.

[21]. A. Manz, D. J. Harrison, J. C. Verpoorte, and H. Ludi, H. M. Widmer, “Integrated electroosmotic pumps and flow manifolds for total chemical analysis systems,” Proceedings Transducers 1991, pp. 939-941, 1991.

[22]. F. C. M. van de Pol, H. T. G. van Lintel, M. Elwenspoek, and J. H. J. Fluitman, “Thermopneumatic micropump based on micro-engineering techniques,” Sensors and Actuators A, Vol. 21, pp. 198-202, 1990.

[23]. R. Zengerle, J. Ulrich, S. Kluge, M. Richter, and A. Richter, “A bidirectional silicon micropump,” Sensors and Actuators A: Physical, Vol. 50, pp. 81-86, 1995.

[24]. W. Zhang and C. H. Ahn, “A bi-directional magnetic micropump on a silicon wafer,” Solid-State Sensor and Actuators, pp. 94-97, 1996.

[25]. A. Olsson, P. Enoksson, G. Stemme, and E. Stemme, “A valveless planar pump isotropically etched in silicon,” Proceedings Micromechanics Europe, pp. 120-123, 1995.

[26]. W. L. Benard, H. Kahn, A. H. Heuer, and M. A.
Huff, “A titanium-nickel shape memory alloy actuated micropump,” Solid-State Sensors and Actuators, pp. 361-364, 1997.

[27]. E. Makino, T. Mitauya, T. Shibata, “Fabrication of TiNi shape memory micropump,” Sensors and Actuators A: Physical, Vol. 88, pp. 256-262, 2001.

[28]. A. Olsson, G. Stemme, E. Stemme, “A valve-less planar fluid pump with two pump chambers,” Sensors and Actuator A: Physical, Vol. 46-47, pp. 549-556, 1995.

[29]. J. M. Berg, R. Anderson, M. Anaya, B. Lahlouh, M. Holtz, T. Dallas, “A two-stage discrete peristaltic micropump,” Sensors and Actuators A: Physical, Vol. 104, pp. 6-10, 2003.

[30]. H. A. Chong and G. S. Mark, “Fluid micropumps based on rotary magnetic actuators,” IEEE Micro Electro Mechanical Systems, pp. 408, 1995.

[31]. J. G. Smites, “Piezoelectric micropump with three valves working peristaltically”, Sensors and Actuators, Vol. A21-A23, pp. 203-206, 1990.

[32]. C. Grosjean and Y. C. Tai, “A thermopneumatic peristaltic micropump,” Solid-State Sensors and Actuators, pp. 1776-1779, 1999.

[33]. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol. 288, pp. 113-116, 2000.

[34]. A. Y. Fu, H. P. Chou, C. Spence, F. H. Arnold, and S. R. Quake, “An integrated microfabricated Cell Sorter,” Analytical Chemistry, Vol. 74, pp. 2451-2457, 2002.

[35]. T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science, Vol. 298, pp. 580-584, 2002.

[36]. J. Liu, C. Hansen, and S. R. Quake, “Solving the “World-to-chip” interface problem with a microfluidic matrix,” Analytical Chemistry, Vol. 75, pp. 4718-4723, 2003.

[37]. L. Y. Kun, “Microbial biotechnology: principles and applications,” World Scientific Publishing Co. Pte. Ltd., 2003.

[38]. 張玉瓏,徐乃芝,許素菁,『生物技術,第二版』,新文京開發出版股份有限公司,2004。

[39]. L. H. He, C. W. Lim, and B. S. Wu, “A continuum model for size-dependent deformation of elastic films of nano-scale thickness,” International Journal of Solids and Structures, Vol. 41, pp. 847-857, 2004.

[40]. Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed., pp. 550-575, 1998.

[41]. 張瑞斌,『微電鍍技術及其在生物晶片之應用』,國立成功大學工程科學研究所碩士論文,2002。

[42]. C. H. Lin, G. B. Lee, Y. H. Lin, and G. L. Chang, “A fast prototyping process for fabrication of microfluidic systems on soda-lime glass,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 726-732, 2001.

[43]. 黃冠瑞,『高效能微流體晶片之設計製作與其在生物醫學之應用』,國立成功大學工程科學研究所碩士論文,2001。

[44]. D. C. Duffy, H. L. Gillis, J. Lin, N. F. Sheppard, Jr., and G. J. Kellogg, “Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays,” Analytical Chemistry, Vol. 71, pp. 4669-4698, 1999.

[45]. 回寶珩,林展生,李國賓,『PDMS表面處理技術及其在新式微閥之應用』,The 6th Nano Engineering and Micro System Technology Workshop,2002。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-07-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-07-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw