進階搜尋


 
系統識別號 U0026-0812200911061065
論文名稱(中文) 冷熱啟動測試機車排放揮發性有機物特徵之差異研究
論文名稱(英文) The Research of The Differences between Motorcycles on Cold-Start and Hot-Start Driving States
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 92
學期 2
出版年 93
研究生(中文) 葉惠芬
研究生(英文) Hui-Fen Yeh
電子信箱 huifen1221@yahoo.com.tw
學號 p5691119
學位類別 碩士
語文別 中文
論文頁數 223頁
口試委員 口試委員-鄭福田
指導教授-蔡俊鴻
口試委員-江鴻龍
口試委員-張能復
中文關鍵字 動力計  揮發性有機物  行車型態  醛酮化合物  冷/熱啟動  致臭氧生成潛勢  最大增量反應性 
英文關鍵字 dynamometer  Driving Patterns  Ozone production formation  Volatile Organic Compounds (VOCs)  hot-start  Carbonyls  the maximum incremental reactivity (MIR)  cold-start 
學科別分類
中文摘要   因應民國93 年1 月1 日起,台灣地區機車進入第四期排放標準管制紀元,本研究乃探討符合第四期排放標準之各類引擎機車尾氣排放空氣污染物特徵,實驗方法以動力計模擬ECE 行車型態,依照冷車、熱車不同啟動方式進行測試,並依ECE cycle 之全程及不同行車階段(加速、減速、怠速運轉以及30、50 Km/hr 定速)之尾氣排放,以Tedlar 採樣袋和醛酮吸附管(Cartridge)進行採樣後,利用GC 及HPLC 定性定量揮發性有機物及醛酮化合物成份及濃度。實驗工作包括8 部零里程(排氣輛小於125c.c.)之新機車,討論各類機車引擎冷啟動、熱啟動之尾氣排放空氣污染物濃度值、特徵物種、排放係數以及致臭氧生成潛勢之差異性。
  研究結果顯示,機車冷啟動測試之空氣污染物排放係數明顯比熱啟動測試結果還高。CO 冷啟動測試排放係數(1.8~2.7g/Km)為熱啟動排放係數(1.8~2.2g/Km)之1.02~1.41 倍;THC 冷啟動排放係數為(0.5~0.6 g/Km)
為熱啟動排放係數(0.3~0.5g/Km)之1.13~2.40 倍;NOx 冷啟動排放係數(0.2~0.4 g/Km)為熱啟動排放係數(0.1~0.3 g/Km)之1.33~2.50 倍;CO2 冷啟動排放係數( 45.8~71.7g/Km ) 為熱啟動排放係數之(45.0~62.7g/Km)1.07~1.16 倍。
  機車廢氣排放揮發性有機物主要成分為Isopentane ( 1.7~10.9mg/Km)、Toluene(1.0~9.6 mg/Km)、2-Methylpentane(0.5~2.7 mg/Km)、3-Methylpentane(0.4~2.1 mg/Km)以及Ethylene(0.2~2.3 mg/Km)等。四行程化油引擎125cc、100cc 以及50cc 與四行程噴射引擎新機車,冷啟動VOCs 排放係數(22.6、31.4、52.6 及11.8 mg/Km)為熱啟動排放係數(13.1、33.5、11.6 及16.4 mg/Km)之1.03~4.53 倍,研究結果顯示除噴射引擎機車外,冷啟動測試VOCs 排放係數明顯比熱啟動還高。機車排放醛酮化合物主要物種為Formaldehyde(0.11~0.60 mg/Km)、Acetaldehyde(0.07~0.81 mg/Km)及Benzaldehyde(0.03~0.62 mg/Km),四行程化油引擎125cc、100cc 以及50cc 與四行程噴射引擎新機車冷啟動測試醛酮化合物排放係數(0.5、0.7、1.8 及0.3 mg/Km)亦有比熱啟動排放係數(0.9、0.5、1.0 及3.5 mg/Km)較高之趨勢。研究結果顯示,除噴射引擎機車,醛酮排放係數僅佔總NMHC 排放係數6 %以下。
  以MIR 值推估機車引擎廢氣所致光化反應潛勢,結果顯示傳統化油引擎機車廢氣NMHC 致臭氧生成潛勢係數以機車冷啟動測試結果較熱啟動還高,其中以四行程50cc 機車冷啟動測試結果最高(0.165 g-O3/Km),四行程125c 機車熱啟動測試結果最低(0.035 g-O3/Km)。機車引擎廢氣VOCs致臭氧排放係數主要排放成分為Ethylene(3.9~22.1 mg-O3/Km)、Isopentane ( 3.1~20.3 mg-O3/Km ) 、2-Methylpentane ( 1.0~5.5mg-O3/Km)3-Methylpentane (0.9~4.9 mg-O3/Km)Toluene(0.9~8.7mg-O3/Km)以及Propylene(1.3~16.5 mg-O3/Km)。機車引擎廢氣醛酮
致臭氧排放係數主要成分則為Formaldehyde(0.6~5.54 mg-O3/Km)、Acetaldehyde(0.59~5.86 mg-O3/Km)。
英文摘要   The study was conducted to survey the emissions of air pollutants from motorcycle on cold-start and hot-start driving state. Emission tests was carried out on a dynamometer following the designated test procedure of the Economic Commission for Europe (ECE) with standard cold-start and hot-start testing processes. The volatile organic compounds (VOCs) and carbonyls compounds were sampled by sampling bags and DNPH-Cartridge, respectively.
Samples were derived from various driving patterns, including idle, acceleration, 30 km/hr cruise, 50 km/hr cruise, and deceleration. All test motorcycles (8 new motorcycles) comply with Taiwan EPA’s phase 4 motorcycle emission standard. Besides, the ozone formation potentials of motorcycle emissions was evaluated by the maximum incremental reactivity (MIR) index.
  The results shows a great difference of air pollutant emission factors between cold-start and hot-start driving state. The emission factors of cold-start (1.8~2.7 g/km) is 1.02~1.04 times than hot-start (1.8~2.2 g/km) for CO. The emission factors of cold-start (0.5~0.6 g/km) is 1.13~2.40 times than hot-start (0.3~0.5 g/km) for THC. The
emission factors of cold-start (0.2~0.4 g/km) is 1.33~2.50 times than hot-start (0.1~0.3 g/km) for NOx. The emission factors of cold-start (45.8~71.7 g/km) is 1.07~1.16 times than hot-start (45.0~62.7 g/km) for CO2.
  For cold-start and hot-start motorcycles, the dominant VOCs species both were Isopentane (1.7~10.9 mg/Km), Toluene (1.0~9.6mg/km),2-methylpentane (0.5~2.7mg/Km), 3-methylpentane (0.4~2.1 mg/Km) and Ethylene(0.2~2.3mg/km).
Theemission factors of VOCs for 4-stroke 125cc, 100cc, 50cc and fuel injection engined-type motorcycles were 22.6, 31.4, 52.6 and 11.8 mg/km (cold-start) and 13.1,33.5, 11.6, 16.4 mg/Km (hot-start), respectively. The result shows the cold-start of VOCs emission factor is about 1~4 times than the hot-start ones. Besides, the
dominant carbonyls species for new and in-use motorcycles are Formaldehyde (0.11~0.60 mg/Km), Acetaldehyde (0.07~0.81 mg/Km), and Benzaldehyde (0.03~0.62mg/Km). The emission factors of carbonyls compounds for 4-stroke 125cc, 100cc,50cc and fuel injection engined-type motorcycles were 0.5, 0.7, 1.8, and 0.3 mg/km(cold-start) and 0.9, 0.5, 1.0, and 3.5 mg/Km (hot-start), respectively.
  The ozone formation potentials of motorcycle emissions, based on ECE test cycle,shows that the value of cold-start driving state were higher than the hot-start ones. Among all test motorcycles, the ozone formation potentials of the 4-stroke 50cc motorcycles were the highest(0.165 g-O3/Km) and the 4-stroke 125cc motorcycles were the lowest one (0.035 g-O3/Km). The dominant VOCs species for the ozone formation potential for cold-start and hot-start driving state were Ethylene (3.9~22.1
mg-O3/Km), Isopentane (3.1~20.3 mg-O3/Km), 2-methylpentane (1.0~5.5 mg-O3/Km),3-methylpentane (0.9~4.9 mg-O3/Km), Toluene (0.9~8.7 mg-O3/Km) and Propylene (1.3~16.5 mg-O3/Km). Besides, the dominant carbonyls species for cold-start and hot-start driving state were Formaldehyde (0.6~5.54 mg-O3/Km, respectively), and Acetaldehyde (0.59~5.86 mg-O3/Km).
論文目次 中文摘要……………………………………………………………………I
英文摘要....................................................III
致謝........................................................V
總目錄………………………………………………………………………VI
表目錄...…………………………………………………………………X
圖目錄………………………………………………………………………XII
第一章 前言………………………………………………………………1-1
1-1 研究缘起…………………………………………………………1-1
1-2 研究目的…………………………………………………………1-3
第二章 文獻回顧…………………………………………………………2-1
2-1 移動源空氣污染排放特性…………………………………………2-1
2-1-1 台灣地區機動車輛概況………………………………………2-1
2-1-2 機車排放量分析………………………………………………2-4
2-2 機動車輛揮發性有機物排放係數推估法比較……………………2-6
2-2-1 動力計實測……………………………………………………2-6
2-2-2 隧道實測推估…………………………………………………2-9
2-2-3 道路實測推估………………………………………………2-11
2-3 各國機車管制法規暨測試方法…………………………………2-13
2-3-1 各國機車管制法規排放標準………………………………2-13
2-4 機動車輛排放光化反應性污染物………………………………2-21
2-4-1 揮發性有機物族群…………………………………………2-21
2-4-2 醛酮有機物族群……………………………………………2-22
2-4-3 最大增量反應性(MIR)……………………………………2-23
2-4-4 光化臭氧生成潛勢指數(POCP)……………………………2-25
2-4-5 VOCs 於大氣中光化反應特性……………………………2-26
2-5 機動車輛揮發性有機物排放係數影響參數……………………2-27
2-5-1 行車型態與行車速度………………………………………2-28
2-5-2 引擎型式與觸媒裝置………………………………………2-29
2-5-3 油品差異與車齡劣化率……………………………………2-30
2-5-4 冷車、熱車方式之車輛啟動………………………………2-31
第三章 研究方法…………………………………………………………3-1
3-1 研究架構……………………………………………………………3-1
3-2 機車篩選與測試條件選擇…………………………………………3-2
3-2-1 機車篩選………………………………………………………3-2
3-2-2 測試條件選擇…………………………………………………3-3
3-3 動力計操作…………………………………………………………3-4
3-3-1 動力計簡介……………………………………………………3-4
3-3-2 動力計操作……………………………………………………3-4
3-3-3 採樣時間規劃…………………………………………………3-5
3-4 機車排氣採樣測定程序……………………………………………3-6
3-4-1 機車調整及前處理……………………………………………3-6
3-4-2 機車排氣之測定……………………………………………3-6
3-4-3 機車排氣之採樣程序…………………………………………3-8
3-5 機車排氣之分析程序及品保品管………………………………3-10
3-5-1 分析設備……………………………………………………3-10
3-5-2 分析程序……………………………………………………3-12
3-5-3 實驗品保品管………………………………………………3-14
3-6 機車尾氣空氣污染物排放係數推估……………………………3-18
3-6-1 機車尾氣HC、CO、CO2 及NOx 排放係數之計算………3-19
3-6-2 機車尾氣排放NMHC排放係數之計算……………………3-21
第四章 結果與討論…………………………………………………………4-1
4-1 機車冷、熱啟動CO、THC、NOx 及CO2 排放特徵解析……………4-1
4-1-1機車冷啟動測試之空氣污染物排放濃度與排放係數解析……4-1
4-1-2機車熱啟動測試之空氣污染物排放濃度與排放係數解析……4-4
4-2 機車冷、熱啟動NMHC 排放特徵解析……………………………4-7
4-2-1 機車冷啟動VOCs排放特徵解析………………………………4-7
4-2-2 機車熱啟動VOCs 排放特徵解析…………………………4-11
4-2-3 機車冷啟動Carbonyls 排放特徵解析………………………4-14
4-2-4 機車熱啟動Carbonyls 排放特徵解析………………………4-15
4-3 機車冷、熱啟動排放空氣污染物之差異……………………………4-17
4-3-1 機車冷、熱啟動排放THC、CO、CO2 及NOx 之差異………4-17
4-3-2 機車冷、熱啟動排放NMHC 之差異…………………………4-18
4-4 機車於不同行車階段排放NMHC之差異…………………………4-19
4-4-1機車於不同行車階段排放VOCs 之差異………………………4-20
4-4-2 機車於不同行車階段排放Carbonyls 之差異…………………4-21
4-5 機車排放NMHC 之影響因子………………………………………4-22
4-5-1 單位油耗所致NMHC 排放係數及特徵成分…………………4-22
4-5-2 符合各期法規排放標準之排氣測值差異分析………………4-24
4-6 機車排放NMHC 之光化反應潛勢…………………………………4-27
4-6-1 機車排放NMHC 致臭氧潛勢特徵及排放係數解析…………4-27
4-6-2 機車使用油品致臭氧潛勢特徵及排放係數解析……………4-30
第五章 結論與建議…………………………………………………………5-1
5-1 結論………………………………………………………………5-1
5-2 建議………………………………………………………………5-4
參考文獻
附錄
參考文獻 Air Pollution Control Engineering, Second Edition, Mc Graw-Hill, 2000
Alternative Engines for Road Vehicles, M.L. Poulton
Andrew Kean,”On-Road Measurement of Speciated NMOC Emissions from Light-Duty Vehicles,”CRC, 2001
Atkinson, R., Tuazon, E. C. and Aschmann, S. M.,“Products of the Gas-Phase Reactions of O3 with Alkenes”, Environ. Sci. Technol. , Vol. 29, Iss. 7, pp.1860-1866 , 1995.
Bailey J. C., Schmidl B., and Williams M. L.,
“Speciated Hydrocarbon Emissions from Vehicles Operated Over the Normal Speed Range On the Road”, Atmos. Environ. 24A(1):43-52, 1990
Black, F. M., High, L. E., “Automotive Hydrocarbon Emission Patterns in the Measurement of Nonmethane Hydrocarbon Emission Rates”, Detroit, MI, SAE Paper 770144. ,1977
Bonamassa, F., Wong-Woo, H., “Composition and Reactivity of Exhaust Hydrocarbons from 1966 California Cars”, paper presented.before the Division of Water, Air and Waste Chemistry, 152nd National Meeting, Amercian Chemical Society, New York, September, 1966
Carter W. P. L. “Development of Ozone Reactivity Scales for Volatile Organic Compounds”, J. Air & Waste Manage. Assoc., 44:881-899. , 1994
Carter, W. P. L., Pierce, J. A., Luo, D., and Malkina, I. L.,“Environmental Chanmber Study of Maximum Incremental Reactivities of Volatile Organic Compounds” Atmos. Environ, Vol. 29, pp. 2499-2511, 1995.
Dann, T. and Wang, D. “Volatile organic compound measurements in Canadian urban and rural areas: 1989-1990.” 85th Annual. Meeting, A&WMA, Missouri.,1992
Derwent, R. G., & Jenkin, M. E., “Hydrocarbons and the Long-Range Transport of Ozone and PAN Across Europe”, Atmos. Environ., 25A(8):1661-1678., 1991
Derwent, R. G. et al.“Photochemical Ozone Creation Potentials for a Large Number of Reactive Hydrocarbons under European Conditions”, Atmos. Environ., 30, pp. 181-199, 1996.
Dimitriades, B. “Scientific basis for the VOC reactivity issues raised by section 183(e) of the Clean Air Act Amendments of 1990.” J. Air & Waste Manage.Assoc.46, pp: 963-970., 1996
Eeva-Liisa Viskari,Matti Vartiainen and Pertti Pasanen,”Seasonal and Diurnal Variation in Formaldehyde and Acetaldehyde Concentrations along a Highway in Eastern Finland,” Atmospheric Environment, 34,917-923, 2000
Finlayson-Pitts B.J., Pitts J.N.,“Atmospheric chemistry ”, John Wiley and sons. NewYork., 1986.
Hoekman, S. K., “Speciated Measurements and Calculated Reactivities of Vehicle Exhaust Emissions from Conventional and Reformulated Gasolines”,Environ. Sci. Technol. , Vol.26, No.6, 1206~1216, 1992
Ingalls, M. N. “On-road vehicle emissions factors from measurements in a Los Angeles area tunnel.” 82nd Annual Meeting of A&WMA, Anaheim, CA., 1989
Pierson,W. R., Gertler, A. W., Bradow, R. L., “Comparison of the SCAQS Tunnel Study with Other On-Road Vehicle Emission Data”, J. A&WMA., Vol. 40(1990)
Schifter, “Estimation of Motor Vehicle Toxic Emissions in the Metropolitan Area of Mexico City”,Environ. Sci. Technol., Vol.34, No.17, 3606~3610, 2000
Shing Tet Leong, S. Muttamara, Preecha Laortanakul, “In.uence of benzene emission from motorcycleson Bangkok air quality”, Atmospheric Environment
Vol.36 (2002) 651-661
Janet Y.,”In-Use Emissions from Heavy-Duty Diesel Vehicles” ,Environ. Sci. Technol. ,Vol.34, No.5, 729-740, 2000
John C.Sagebiel, Barbara Zielinska,”Real-World Emissions and Calculated Reactivities of Organic Species from Motor Vehicles,”Atmospheric Environment, Vol. 30, NO.12, 2287-2296 , 1996
John F. Collins,Thomas D. Durbin,Kathy Cocker,and Joseph M. norbeck,”The Effects of Alternative Diesel Fuels on the Composition of Organic Gas Emissions from Light Heavy-Duty Diesel Vehicles,”CRC, 2001
Lawson, D.R., Groblicki , P.J.,Stedman,D.H.,Bishop G.A. and Guenther , P. L.“Emissions from In-Use Motor Vehicles in Los Angelles:A Pilot Study of Remote Sensing and the Inspection and Maintenance Program ,” J.Air & Waste Manage . Assoc. , 40:1096-1105., 1990
Lonneman, W. A., Selia, R. L. and Meeks, S. A. “Non-Methane Organic Composition in the Lincoln Tunnel,” Environ. Sci. Technol. , 20(8):790-796., 1986
Matthew P. Fraser,Glen R.CASS,and Bernd R. T. Simoneit,”Gas-Phase and Particle-Phase Organic Compounds Emitted from Motor Vehicle Traffic in a Los Angeles Roadway Tunnel,” Environ. Sci. Technol. , Vol. 32, NO.14, 2051-2060,1998
National Academy Press,”National Academy of Sciences, Rethinking the Ozone Problem in Urban and Regional Air Pollution.,”Washington. DC, 1991
Perkins, H. C., “Air Pollution”,McGraw-Hill , Inc., 1974
Roy B.Zweldinger, John E. Sigsby,”Detailed Hydrocarbon and Aldehyde Mobile Source Emissions from Roadway Studies,”Environ. Sci. Technol.,Vol.22, NO.8,956-962, 1988
Wadden, R. A. ”Source discrimination of short-term hydrocarbon samples measured aloft“, Environ. Sci. Technol., Vol.20, pp: 473-483, 1986
行政院環境保護署(1997),南區汽車排氣遙測計畫,台北
行政院環境保護署(1999),審查申請高污染老舊機車汰舊換新,台北
交通部統計處(2000),台灣地區交通統計月報,台北
交通部統計處資訊服務網站,http://www.motc.gov.tw/~ccj/main.htm
環保署網站,http://www.epa.gov.tw
台灣區車輛工業同業公會網站,http://www.ttvma.org.tw/chinesestatistic.htm
車輛測試研究中心(ARTC)網站,http://www.artc.org.tw/chinese/home.asp
經濟部能源委員會網站,http://www.moeaec.gov.tw/
中華人民共和國國家標準-”摩托車排氣污染物排放限值及測量方法”
行政院環保署(1990),汽車排放空氣污染物儀器檢驗人員汽機車惰轉狀態及負載檢驗訓練教材(第三期)
李秉壬(1989),市區小客車行車型態之研究,國立成功大學碩士論文
陳煥文(1997),以隧道實驗推估車輛氣態污染物排放係數之研究,國立成功大學碩士論文
王建鴻(1998),乙醇替代燃料對於汽油引擎排放廢氣中醛酮類化合物之研究,國立成功大學碩士論文
翁閎政(1998),機車排氣之揮發性有機物特徵及光化反應性研究,國立成功大學碩士論文
何文淵(1999),汽油車引擎廢氣揮發性有機物成份及光化反應潛勢,國立成功大學碩士論文
林清和(1999),南高屏地區空氣污染總量管制規畫-移動源排放量整合與推估,行政院環保署,台北
陳宜佳(2000),汽車排放空氣污染物控制對策減量評估研究,國立成功大學碩士論文
黃靖雄(1982),現代低公害省油汽車淨化裝置之研究,全華科技圖書股份有限公司,台北
詹長權(1995),建立石油類燃料排放揮發性物質(VOCs)資料庫及危害風險管理規劃-以管制油品來降低大氣中毒性污染物濃度:醛類, 行政院環保署計劃EPA-84-F102-09-01,台北
劉育穎(2000),機車排放醛酮化合物特徵與光化反應性研究,國立成功大學碩士論文
楊明益(2000),高屏地區大氣醛酮化合物與臭氧污染事件關聯性,國立成功大學碩士論文
趙浩然(2000),多種機動車輛排放醛酮化合物之研究,國立成功大學博士論文
吳欣璇(2001),使用中機車定檢成效評估與污染排放推估,國立中興大學碩士論文
彭柏鈞(2002),都會區機車行車型態與空氣污染物排放特性之調查,國立成功大學碩士論文
華梅英(2002),以隧道實驗分析車行排放係數與光化反應特徵研究,國立台灣大學碩士論文
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2004-06-29起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2004-06-29起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw