進階搜尋


 
系統識別號 U0026-0812200911053360
論文名稱(中文) 壓電式致動器設計製作及其在霧化器與微混合器之應用
論文名稱(英文) Design, Fabrication of Piezoelectric Actuators and Their Applications on Atomizer/Micro-Mixers
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 92
學期 2
出版年 93
研究生(中文) 曾維國
研究生(英文) Wei-Guo Tseng
電子信箱 weiguo1018@yahoo.com.tw
學號 n9690151
學位類別 碩士
語文別 中文
論文頁數 118頁
口試委員 口試委員-潘文峰
口試委員-陳淑慧
指導教授-李國賓
口試委員-李輝煌
中文關鍵字 壓電式致動器  微機電系統  生物晶片  微混合器  霧化器 
英文關鍵字 Micro-mixer  Atomizer  MEMS  Bio-chip  Piezoelectric actuators 
學科別分類
中文摘要   壓電材料具有體積小、頻率響應快速、精密度高及容易控制等特性,本研究以微機電製造技術,使用壓電材料鈮酸鋰(LiNbO3),設計及製作壓電式致動器,透過壓電效應驅動壓電基材產生致動力量,並在適當的設計下,使壓電材料形成超聲波振動,能量以表面聲波的方式傳遞,液體吸收振動能量而發生霧化現象,因此可做為液體霧化器(Atomizer),霧化效率隨著壓電材料的驅動電壓成正比關係。
  本研究並應用壓電式致動器於微流體生物晶片系統中,微流體本身具有雷諾數很小,不利於流體間擴散的行為。為了提昇生物晶片系統內微管道的反應效率,本實驗即利用壓電致動器製作一主動式微混合器,將塑膠材質製成的生物晶片結合壓電致動器,高頻振動傳遞至微管道內的流體,可有效加速微型流體系統混合,提升反應效率,對於未來晶片實驗室發展而言,有其重要性。
  本研究並以蛋白質與酵素分解反應實驗證實壓電式混合器能有效提升生化反應效率,使用質譜分析及液相層析分析結果,比較出壓電式致動混合與自然條件下混合的性能差異,證明壓電式混合器在實驗室晶片系統內的實用價值。
英文摘要   Piezoelectric materials have several advantages including compactness, high frequency response, high precision and ease to control. The present paper reports design and fabrication of LiNbO3 -based piezoelectric actuators using MEMS technology. The piezoelectric actuators are first used as ultrasonic atomizers to generate mists.
  Besides, mixing could be a challenging work in a microfluidic system due to low-Reynolds-number nature. We design active micro-mixers which integrate the piezoelectric actuators with PDMS microchannels. The experimental results show that the piezoelectric actuators can improve mixing performance effectively.
  Furthermore, protein digestion is used to test the performance of the piezoelectric mixers. Data from mass spectrometry and high-performance liquid chromatography (HPLC) confirm that protein digestion could be significantly enhanced. The development of the micro-atomizers and micro-mixers could be useful for lab-on-a-chip systems.
論文目次 中文摘要 …………………………………………………………Ⅰ
Abstract …………………………………………………………Ⅱ
誌謝 ………………………………………………………………Ⅳ
目錄 ………………………………………………………………Ⅵ
表目錄 ……………………………………………………………Ⅹ
圖目錄 …………………………………………………………ⅩⅠ
符號說明 ………………………………………………………ⅩⅨ

第一章 緒論
1-1 前言……………………………………………………………1
1-2 微機電系統……………………………………………………2
1-3 生物晶片………………………………………………………5
1-4 研究動機與目的………………………………………………7
1-5 文獻回顧………………………………………………………9
1-5-1 壓電式微致動器………………………………………9
1-5-2 霧化器…………………………………………………11
1-5-3 微混合器………………………………………………12

第二章 壓電原理及壓電致動器設計方法
2-1 壓電效應………………………………………………………16
2-2 壓電方程式……………………………………………………17
2-3 壓電參數與壓電材料…………………………………………20
2-3-1 壓電特性參數…………………………………………20
2-3-2 壓電材料………………………………………………21
2-4 壓電致動原理…………………………………………………23
2-4-1 壓電致動方法 ………………………………………23
2-4-2 指叉轉能器……………………………………………24

第三章 壓電致動器與微流體生物晶片製作技術
3-1 光罩製作………………………………………………………26
3-2 製程技術………………………………………………………27
3-2-1 晶片清潔………………………………………………27
3-2-2 微影製程………………………………………………28
3-2-2-1 塗佈光阻……………………………………29
3-2-2-2 曝光…………………………………………30
3-2-2-3 顯影…………………………………………31
3-2-3 金屬蒸鍍………………………………………………32
3-2-4 光阻剝離………………………………………………33
3-3 微流體生物晶片設計與製作技術……………………………34
3-3-1 PDMS材料特性…………………………………………35
3-3-2 PDMS製程技術…………………………………………36
3-3-2-1 母模製程……………………………………36
3-3-2-2 翻模製程……………………………………38

第四章 結果與討論
4-1 壓電元件量測結果……………………………………………40
4-2 壓電式霧化器…………………………………………………42
4-2-1 溫度場分佈……………………………………………42
4-2-2 霧化結果………………………………………………45
4-3 壓電式微混合器………………………………………………46
4-3-1 實驗方法………………………………………………47
4-3-2 混合實驗結果…………………………………………48
4-4 微混合器應用在蛋白質分析…………………………………49
4-4-1 蛋白質分解……………………………………………49
4-4-2 實驗方法………………………………………………51
4-4-3 實驗架設………………………………………………52
4-4-4 實驗結果………………………………………………55
4-4-4-1 蛋白質標準品與胰蛋白脢反應結果………55
4-4-4-2 人類血色素蛋白與胰蛋白脢反應結果……57

第五章 研究結論與未來展望
5-1 研究結論………………………………………………………60
5-2 未來展望………………………………………………………62

參考文獻……………………………………………………………111

自述…………………………………………………………………118
參考文獻 1. A. Ballato, “Piezoelectricity: old effect, new thrusts,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 42, pp.916-926, 1995.
2. L. Rayleigh, “On Waves Propagated Along The Plane Surface of An Elastic Solid,” Proc. London Math. Soc. Vol. 17, pp. 4, 1885.
3. R. M. White, F. W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic Waves,” Appl. Phys. Lett, 7, pp. 314-316, 1965.
4. D. P. Morgan, “History of SAW devices,” Frequency Control Symposium, IEEE, pp. 27-29, 1998.
5. R. P. Feynman, “The Pleasure of Finding Things Out,” 吳程遠譯, pp. 155-190. 天下文化書坊, 2001.
6. K. Petersen, “Silicon as a mechanical material,” Proceedings of the IEEE, pp. 420-457, 1982.
7. M. Madou, “Fundamentals of Microfabrication”, CRC, 1997.
8. D. Kevin, “Cracking the Genome,” 潘震澤譯, 時報文化, 2001.
9. 李國賓, “下一波之生物晶片-微流體生醫晶片之應用及研發”, 《科學發展》月刊, 2003.
10. M. Kurosawa, A. Futami, T. Higuchi, “Characteristics of liquids atomization using surface acoustic wave”, IEEE TRANSDUCERS, Vol. 2, pp. 801-804, 1997.
11. Y. C. Tai, L. S. Fan, R. S. Muller, “IC-processed micro-motors: design, technology, and testing“, Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, IEEE , pp. 1-6, 1989.
12. 陳建人, “微機電系統技術與應用”, 精密儀器發展中心, 2003.
13. M. Stehr, S. Messner, H. Sandmaier, R. Zengerle, “A new micropump with bidirectional fluid transport and selfblocking effect”, An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, IEEE, The Ninth Annual International Workshop on, pp. 485–490, 1996.
14. R. Linnemann, P. Woias, C. D. Senfft, J. A. Ditterich, “A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases,” MEMS Proceedings, The Eleventh Annual International Workshop, Pages:532–537, 1998.
15. S. Matsumoto, A. Klein, R. Maeda, “Development of bi-directional valve-less micropump for liquid,” MEMS Twelfth IEEE International Conference on, 1999.
16. M. Kurosawa, T. Watanabe, T. Higuchi, “Surface acoustic wave atomizer with pumping effect,” Micro Electro Mechanical Systems, IEEE, pp. 25, 1995.
17. M. K. Kurosawa, H. Itoh, K. Asai, T. Shigematsu, “Micro linear motor using surface acoustic wave device,” Industrial Electronics, ISIE, IEEE, Vol. 2, pp. 383-387, 2002.
18. 鄭振東, “超音波工程,” 全華科技圖書, pp.9-10. 1999.
19. L. Bayvel, Z. Orzechowski, “ Liquid Atomization,” Taylor & Francis publisher, 1993.
20. C. Chiba, K. Suzuki, H. Kusano, “On the pneumo-acoustic liquid atomization,” Vol 21, pp. 1-10, 1990.
21. X. Zhu, E. S. Kim, “Microfluidic motion generation with loosely-focused acoustic waves,” Solid State Sensors and Actuators, TRANSDUCERS, Vol. 2, pp.837-838, 1997.
22. V. Vivek, E. S. Kim, “Novel acoustic-wave micromixer,” Micro Electro Mechanical Systems, pp. 668-673, 2000.
23. Z. Yang, H. Goto, M. Matsumoto, R. Maeda, “Ultrasonic micromixer for microfluidic systems,”Micro Electro Mechanical Systems, pp. 80-85, 2000.
24. A. Deshmukh, D. Liepmann, P. Pisano, “Continuous Micromixer with Pulsatile Micro Pumps,” Solid-State Sensor and Actuator Workshop, 2000.
25. Y. K. Lee, J. Deval, P.Tabeling, C.M. Ho, “Chaotic mixing in electrokinetically and pressure driven micro flows,” The 14th IEEE International Conference on , pp. 483–486, 2001.
26. H. Suzuki, C.M. Ho, "A magnetic force driven chaotic micro-mixer," The Fifteenth IEEE International Conference on MEMS, pp. 40-43, 2002.
27. P. F. Man, C. H. Mastrangelo, M. A. Burns, D. T. Burke “Microfabricated Capillarity-Driven Stop Valve and Sample Injector,” IEEE, pp. 45-50, 1998.
28. J. Brenebjerg, P. Gravesen, J. P. Krog, C. R. Nielsen, “Fast Mixing by Lamination,” Proceedings of the 9th Annual Workshop on Micro Electro Mechanical Systems, pp. 441-446, 1996.
29. S. C. Jacobson, T. E. McKnight, J. M. Ramsey, “Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing,” Anal. Chem., Vol 71, pp. 4455-4459, 1999.
30. 吳朗, 電子陶瓷(壓電), 全新科技圖書, 1994.
31. H. D. Young, R. A. Freedman, “University Physics,” ADDISON-WESLEY, p415, 1996.
32. S.O. Kasap, “Principles of Electronic Materials and Devices,” McGraw-Hill, pp. 523, 2002.
33. 陳世春, “Fundamentals of Piezoelectric Materials Science 基本壓電材料學,” 復漢出版社, 2001.
34. C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications,” Academic Press, 1998.
35. 莊達仁, “VLSI製造技術,” P291, 高立書局, 2002.
36. 回寶珩, 林展生, 李國賓, “PDMS表面處理技術及其在新式微閥之應用,” The 6th Nano Engineering and Micro System Technology Workshop, 2002.
37. 劉恆惠, “微型生化反應槽之設計製作及測試,” 國立成功大學工程科學研究所碩士論文, 2003.
38. Y. Xia, G. M. Whitesides, “Soft Lithography,” Angew. Chem.Int. Ed., pp. 550-575, 1998.
39. H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, “PhotochemCAD: A computer-aided design and research tool in photochemistry,” Photochemistry and Photobiology, pp. 141-142, 1998.
40. 田蔚城, “生物技術的發展與應用,” 九洲圖書文化, 2000.
41. 毛光興, "Instrumental Methods of Chemical Analysis, 儀器分析," 幼獅出版社, 1974.
42. 林敬二, "Peinciples of Instrumental Analysis, 儀器分析,"美亞書版社, 1994.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2004-06-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2004-06-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw