進階搜尋


 
系統識別號 U0026-0812200911045761
論文名稱(中文) 內混式噴嘴金屬粉末噴霧製程最佳化研究
論文名稱(英文) Optimization Processes of Metal Powder Production in an Internal-Mixing Atomizer
校院名稱 成功大學
系所名稱(中) 航空太空工程學系專班
系所名稱(英) Department of Aeronautics & Astronautics (on the job class)
學年度 92
學期 2
出版年 93
研究生(中文) 賴等參
研究生(英文) Teng-San Lai
學號 p4791103
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 口試委員-徐明生
口試委員-張克勤
指導教授-王覺寬
中文關鍵字 金屬粉末  噴霧製程  粒度  內混式噴嘴  田口式方法 
英文關鍵字 Particle Size.  Internal-Mixing  Taguchi Method  Spray  Metal Powder 
學科別分類
中文摘要   本文主要以品質設計實驗計劃法-田口式直交表實驗法,探討產生超微粒金屬粉末噴霧製程之設計參數,並依控制因子及其水準的數目選用適當的實驗直交表,以決定金屬粉末噴霧製程最佳化因子。在5個最受推薦的直交表中採用L18(21x37)直交表;將8個噴霧製程控制因子及其水準安排在L18直交表中,再依直交表中所列之設計參數製作相關之噴嘴,並進行實驗研究及最佳化分析。研究結果顯示,產生15微米以下之超微粒金屬粉末,其品質特性平均值為32.86,標準偏差平均值為2.67,S/N比平均值為29.70。由因子對品質特性的反應表及反應圖與因子對S/N比的反應表及反應圖決定最佳化品質設定、再經變異分析,變異統合及確認實驗,結果顯示噴嘴設計參數中,液體入口管徑,噴嘴出口面積為最重要之控制因子。在金屬粉末製程操作參數方面,液體噴射壓力為重要控制因子。在金屬材質方面以鉛錫合金為最佳之品質物性,霧化氣體以氮氣(N2)較佳,加熱溫度與氣液噴流角度,對霧化金屬粒徑大小無特別明顯之效果。實驗結果亦顯示,產生之金屬粉末平均粒徑隨氣液質量比(MG/ML)之增加而變小,在氣液質量比為0.05時,粉末平均粒徑為20μm,但若氣液質量比增加至0.20時,粉末平均粒徑則成為12μm以下之超微粒粉末。本研究中所產生之金屬粉末粒徑分佈,顯示其粒徑分佈範圍相當集中,為相當良好之超微粒金屬粉末產生機制,因此較易篩分為電子封裝所需之規格。從原始設計到最佳設計,S/N比提高了6.97,V0-15% 為 56.9%,即所產生超微粒金屬粉末中有一半以上在0~15微米之範圍。
英文摘要   This paper investigates the production of the extra-fine metal powder by spray technique with Taguchi-method. Optimization of the production process is performed by the L18(21x37) scheme. The goal is to produce the metal powder with particle size from 0 to 15μm. Results show that the mean quality is 32.86 with standard deviation 2.67 and S/N ratio 29.7. Optimization analysis shows that the melt inlet diameter and the orifice diameter of the nozzle are the control factors of the nozzle design. The injection pressure of the melt is the control factor among the operation parameters. While the control factors of the material and atomization gas are Sn-Pb alloy and the nitrogen gas, respectively. The heating temperature and the jet angle inside the atomizer have small effect of the powders within 0~15μm. Experimental results also show that the Sauter Mean Diameter (D32)of the melt spray decreases from 20μm to 12μm as the Gas-Liquid Ratio increases from 0.05 to 0.20. This size distribution of the metal powers produced by present nozzle is quite narrow. The accumulative volume of the powers within 0~15μm can increases to 59.6%. That is, half of the powers are within extra-fine range. Thus, the nozzle used in this paper has a better mechanism for extra-fine metal power production.
Keywords: Metal Powder, Spray, Taguchi Method, Internal-Mixing, Particle Size.
論文目次 目錄
摘要
英文摘要
誌謝
目錄............................................................ Ⅰ
圖目錄......................................................... IV
表目錄.......................................................... Ⅴ
符號說明........................................................ VI
第一章緒論...................................................... 1
1-1 簡介..................................................... 1
1-2 文獻回顧................................................. 3
1-2-1 液體碎化過程研究...................................... 3
1-2-2 霧化器設計相關研究.................................. 5
1-2-3 雙流式霧化器......................................... 7
1-2-3-1 氣衝式霧化器之相關研究........................... 7
1-2-3-2 氣助式霧化器之相關研究............................ 8
1-2-4 內混式霧化器相關研究............................... 10
1-3 研究目的及動機.......................................... 11
第二章實驗設備及儀器........................................... 14
2-1 實驗設備................................................ 14
2-2 實驗量測儀器............................................ 17
2-2-1 INSITEC 粒徑分析儀................................... 18
2-2-2 多功能掃瞄式電子顯微鏡.............................. 19
2-3 自動化系統.............................................. 19
第三章實驗步驟及方法........................................... 22
3-1 田口式參數實驗設計法分析方法及步驟...................... 22
3-2 田口式參數實驗設計法分析方法............................ 23
3-2-1 各實驗法優缺點...................................... 23
3-2-2 直交表.............................................. 24
3-2-3 品質計量法.......................................... 24
3-3 田口式參數實驗設計法之分析步驟......................... 27
3-4 液態金屬之溫度控制...................................... 28
3-5 微粉末之防護............................................ 29
3-6 液態金屬霧化及冷卻...................................... 30
3-7 液態金屬質量流量的量測................................. 31
3-8 衝擊氣體質量流量的計算................................. 32
3-9 INSITEC 粒徑分析儀的量測............................... 32
3-10 金屬顆粒的顯微鏡量測................................... 32
3-11 量測條件............................................... 33
3-12 實驗誤差............................................... 33
3-12-1 INSITEC 粒徑分析儀之儀器誤差........................ 33
3-12-2 金屬粉末製造過程所產生的誤差........................ 34
3-12-3 粉末取樣過程之誤差................................ 34
3-13 量測參數............................................... 35
第四章實驗結果與討論............................................ 37
4-1 田口式實驗計劃法....................................... 37
4-1-1 田口式直交實驗法.................................... 38
4-1-2 信號/誤差比(S/N ratio)比............................ 38
4-1-3 控制因子及水準表................................... 40
4-1-4 實驗數據統計........................................ 40
4-1-5 資料分析............................................ 41
4-1-6 變異分析.......................................... 43
4-1-7 確認實驗與預測值的比較.............................. 48
4-2 內混式液態金屬霧化器之特性.............................. 50
4-2-1 SEM 照片圖........................................... 51
第五章結論..................................................... 52
參考文獻........................................................ 54
自述............................................................ 98
參考文獻 [1] Cubberly, Metal Handbook ninth edition, Volume 7 , Powder Metallurgy ,William H. ,1984.
[2] Yunzhong Liu, Kazumi Minagawa, Hideki Kakisawa and Kohmei Halada, “Hybrid Atomization : Processing Parameters and Disintegration Modes,” The International Journal of Powder Metallurgy, Vol. 39, No.2, pp.29-37, 2003.
[3] 伍祖璁、黃錦鍾。粉末冶金。台北市:高立,1990.
[4] Lawley, Alan., “Atomization : The Production of Metal Powders,” Metal Powder Industries Federation, New Jersey, USA, 1992.
[5] A. H. Lefebvre, “Gas Turbine Combustion,” Chapter1, Hemisphere Publishing Corporation, New York, 1983.
[6] 李輝煌,田口方法(Taguchi Methods) 品質設計的原理與實務,高立圖書有限公司,2000.
[7] 田口玄一、吉澤正孝, 田口式品質工程講座(一)開發設計階段的品質工程。中國生產力中心,1990.
[8] 田口玄一、山本昌吳, 田口式品質工程講座 (二)製造階段的品質工程 。中國生產力中心,1991.
[9] 田口玄一、小西省三, 田口式品質工程講座(三)品質評價的S/N比 中國生產力中心,1991.
[10] 田口玄一、橫山巽子, 田口式品質工程講座(四) 品質設計的實驗計畫法 中國生產力中心,1995.

[11] 丁志華等 田口實驗計畫法簡介(I)奈米通訊,第八卷 第 三 期 2001.
[12] Castleman, R. A., Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
[13] Lefebvre, A. H., “Gas Turbine Combustion,” Chapter 10, Hemisphere Publishing Corporation, New York, 1983.
[14] Dombrowski, N. and Johns, W. R., “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
[15] Simmons, H. C., “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report, No.7901/2-0, 1979.
[16] Stapper, B. E., Sowa, W. A. and Samuelsen, G. S., ”An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
[17] Fraser, R. P., ”Liquid Fuel Atomization, ” Sixth Symposium(International) on Combustion, Rein-hold, New York, pp.687-701,1957.
[18] Cubberly, and William, H. Metal Handbook. ninth ed., Vol. 7, Powder Metallurgy, American Society for Metal, 1984.
[19] Tallmadge, J. A., “Powder Production by Gas and Water Atomization of Liquid Metals,” Powder Metallurgy Processing, Kuhn, H. S. and Lawley, A. (eds.), Academic Press, New York, NY, 1978, pp. 1-32.
[20] Tamura, K. and Takeda, T., “Production of Copper Powder by Atomization,” Trans. Nat. Res. Inst. Metals (Japan), 1963, vol. 5,pp. 252-256.
[21] German and Randall, M., Powder Metallurgy Science. Metal Powder Industries Federation, Princeton, N.J., 1994.
[22] Rizkalla, A. A. and Lefebvre A.H., “The Influence of Air and Liquid Properties on Airblast Atomization,” J. Fluids Eng., Vol. 97, pp. 316-320, 1975
[23] Rizkalla, A. A. and Lefebvre A.H., "Influence of Liquid Properties on Airblast Atomizer Spray Characteristics,” J. Eng. Power, pp. 173-179, April 1975.
[24] Rizk, N. K. and Lefebvre, A. H., ”Influence of Atomizer DesignFeature on Mean Drop Size,” AIAA Journal, Vol. 21, No. 8, pp.1139-1142, 1983.
[25] Beck, J., Lefebvre, A. H. and Koblish, T., ”Air Blast Atomization at Conditions of Low Air Velocity,” Paper No AIAA- 89-0217, 1989.
[26] Beck, J. E., Lefebvre A. H. and Koblish, T. R., “Liquid Sheet Disintegration by Impinging Air Streams,”Atomization and Sprays, Vol. 1, No. 2, pp. 155-170, 1991.
[27] Beck, J. E. and Lefebvre A. H., "Airblast Atomization at Conditions of Low Air Velocity," J. Propulsion, Vol. 7, NO.2, March-April, 1991.
[28] Aligner, M. and Wittig, S., "Swirl and Counter Swirl Effects in Prefilming Airblast Atomization", Trans. ASME, J. Eng. Power, Vol. 102, pp.706-710, 1980.
[29] 許耀仁。氣衝式平面噴嘴液膜霧化特性之研究。 國立成功大學航太所碩士論文, 1993
[30] Sattelmayer, T. and Witting, S.,“Internal Flow Effects in Prefilming Airblast Atomizers Mechanisms of Atomization and Droplet Spectra,”ASME Journal of Engineering for Gas Turbine and Power, Vol. 108, pp.465-472, 1986.
[31] Press, C., Gupta, A.K. and Semerjian, H.G., "Aerodynamic Effects on Fuel Spray Characteristics: Air-assist Atomizer, "HTD-vol.104, pp.111-119, 1988.
[32] Kevin, S. Chen and Lefebvre, Arthur H., "Spray Cone Angle of Effervescent Atomizers," Atomization and Sprays, vol. 4, pp.291-301, 1994.
[33] Rizk, N.K. and Lefebvre, A.H., “Spray Characteristics of Plain-jet Airblast Atomizer,” Transaction of The ASME vol. 106, July 1984.
[34] 楊坤和。研究型氣助式噴嘴之噴霧特性研究。 國立成功大學航太所碩士論文,1992。
[35] J. D. Whitlow and A. H. Lefebvre,“Effervescent Atomizer Operation and Spray Charateristics,” Vol 13, pp. 137-155, 1993
[36] 徐明生。雙流體式平面噴嘴霧化特性之研究。 國立成功大學航太所碩士論文,1995。
[37] 王承光。氣助式及氣衝式平面噴嘴中霧化空氣對噴霧特性之研究。國立成功大學航太所碩士論文,1996。
[38] 康煜昌。平面型液態金屬霧化器之霧化特性研究。 國立成功大學航太所碩士論文,1998。
[39] Wang, M.R., Sheu, M.S., and Yang, S.R., “Performance of A Linear Internal Mixing Atomizer in Atomization of Molten Metals,” Iclass2000, Eighth International Conference on Liquid Atomization & Spray System, Pasadena, CA, USA, July, 2000.
[40] Wang, M.R., Lin, T.C., Yang, C.J., Kuo, Z.Z., and Sheu, M.S., “Effect of Operating Conditions on Molten Metal Atomization in a Lineat Internal Mixing Atomizer,” The Seventh Annual Conference on Liquid Atomization and Spray Systems-Asia, Tainan, Taiwan, pp.237-242, Nov., 2002.
[41] 王覺寬、林天柱、揚哲睿、徐明生,“噴嘴出口長寬比對平面型液態金屬霧化器霧化品質之影響”,第十三屆燃燒學會,台北,Taiwan,ROC, pp.97, Mar. 3, 2003.
[42] 楊哲睿。液態金屬在噴嘴不同長寬比下之霧化特性。 國立成功大學航太所碩士論文,2002。

[43] 郭振展,液態金屬在噴嘴低長寬比下之霧化特性,國立成功大學航太所碩士論文2003.

[44] 王覺寬,康煜昌,徐明生,楊舒然,”氣助式平面型液態金屬霧化器特性研究,” 40th Conference on Aero. and Astro. Of ROC, Taichung, Taiwan, ROC, Dec, 1998
[45] Zhou, Y., McDonell, V.G., Samuelsen, G.S., Kozarek, R.L., and Lavernia, E.J., “Size Distribution of Spray Atomized Aluminum Alloy Powders Produced During Linear Atomization,” Material Science and Technology, Vol.15, No.2, pp.226-234, 1999.
[46] Anderson, I.E., and Terpstra, R.L., “Progress Toward Gas Atomization Processing with Increased Uniformity and Control,” Material Science and Engineering, A326, pp.101-109, 2002.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2004-06-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2004-06-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw