進階搜尋


 
系統識別號 U0026-0812200910445245
論文名稱(中文) 南部橫貫公路甲仙-天池段公路 邊坡崩壞與降雨量關係研究
論文名稱(英文) The study about correlation between rainfall and slope failure at Jia-Xian~Tian-chi section of the southern cross-land highway
校院名稱 成功大學
系所名稱(中) 土木工程學系專班
系所名稱(英) Department of Civil Engineering (on the job class)
學年度 91
學期 2
出版年 92
研究生(中文) 謝玉興
研究生(英文) Yu-Shing Hsieh
學號 n6789113
學位類別 碩士
語文別 中文
論文頁數 136頁
口試委員 口試委員-林宏明
口試委員-陳時祖
口試委員-林炳森
口試委員-田坤國
指導教授-李德河
中文關鍵字 淺層破壞  降雨強度  邊坡  潛能 
英文關鍵字 shallow layer failure  probability  slope  rainfall intensity 
學科別分類
中文摘要 本研究應用一種經濟且安裝及維護均容易之量測裝置,以南橫公路甲仙至天池間之公路邊坡為研究對象,選擇適當的地點安裝量測系統,共計安裝47處,經歷2002年5月至9月止雨季觀測,所安裝之監測儀器可準確測得邊坡受降雨侵襲而發生破壞之時間,研究期間共計獲得25處邊坡破壞發生的時間,這些邊坡破壞規模皆屬於小規模的淺層破壞,依據氣象局的降雨記錄及對應邊坡破壞的時間,顯示淺層破壞與降雨性質關係密切。
研究結果顯示:(1)47處監測點中有25處發生1~2次破壞觀測期間共計產生32次邊坡崩壞,其中17次邊坡在最大降雨強度發生後2小時內產生邊坡崩壞佔53%,在最大降雨強度發生2-5小時內產生邊坡崩壞者有7次佔22%,在最大降雨強度發生5小時以上產生邊坡崩壞者有8處佔25%,此結果與池谷浩之研究有一致的結果。(2) 邊坡崩壞坡面在70°以上者13次,佔40.6%,60°~70°有10次佔31.2%,坡面50°~60°者9次佔28.2%,顯示坡面愈陡峭者愈容易因降雨而產生坡面破壞。(3)在累積雨量80 mm以內時產生崩壞共有23次,佔監測邊坡51.06%,也即表示在南部橫貫公路高破壞潛能邊坡在降雨量達80mm以上時,邊坡破壞機率相當高。(4)監測邊坡在最大降雨強度達20mm/hr時,約有一半產生破壞,此即表示南部橫貫公路高破壞潛能的邊坡在降雨強度達20mm/hr以上暴雨侵襲時,坡面發生破壞的機率相當高。(5)在32次崩壞邊坡中砂頁岩互層邊坡有18次,佔崩壞邊坡56%,砂岩層邊坡7次佔22%,頁岩層坡7次佔22% (6)在最大降雨強度2小時內發生坡面崩壞者計17次,其中崩壞坡面坡度在70°以上有8次佔47%,崩壞坡面坡度在60°~69° 4次佔23.5%,崩壞坡面坡度在50°~59° 5次佔29.5%,顯示當一場暴雨發生後,愈陡峭之邊坡愈容易產生坡面破壞。(7)以最大降雨強度為橫座標,累積雨量為縱座標,將各監測點崩壞時降雨資料繪於同一圖上,以累積雨量40mm,最大降雨強度20mm/hr連線成一次方程式y+2x=40,則除了一點異常外各崩壞點均落在直線上方,此一直線為甲仙-天池段邊坡發生淺層破壞之臨界線,此一臨界線可做為發佈公路危險警示基準。(8)本研究監測邊坡崩壞點與雨量測候站間之距離,大部份在5公里以內佔56%,5公里至10公里以內者佔41%,超過10公里以上者佔3%,因此雨量測候站至監測點之距離以10公里內所蒐集之資料可靠度較高。
英文摘要 This research implemented a measure device to survey the slope at Jia-Xian ~ Tian-Chi section of the southern cross-land highway. Totally we selected 47 appropriate locations as the measure points to install these devices which were safe, economical, quick-installed and easy-maintained. Passing through the rain season from May to September in 2002, these devices got the accurate occurring time of the slope failure caused by the rain wash. Totally we got the data, occurring time of slope-failure, from 25 locations. These slope failures all belonged to the small scale of the shallow layer failure. Comparing the Central Weather Bureau’s rainfall data and our occurring time of the slope failure, it revealed that there was the close relation between the shallow layer failure and the rainfall situation.

The result revealed:

(1) The slope failures happened for 1 ~ 2 times at 25 out of 47 measure points, so that the total frequency counted to 32 times. Among these happenings, there were 17 slope failures occurred within 2 hours after the highest rainfall intensity occurred. It was 53% among total slope-failure frequency. Within 2~5 hours after the highest rainfall intensity occurred, there were 7 slope failures happened; it occupied 22%. Beyond 5 hours after the highest rainfall intensity occurred, there were 8 slope failures happened; it was 22% among the total frequency. This result was the same as 池谷浩’s research.
(2) The failures whose slope angles were above 70 degrees occurred 13 times; it was 40.6% among the total happenings. The failures whose slope angles were between 60 and 70 degrees occurred 10 times; it was 31.2%. The failures whose slope angles were between 50 and 60 degrees occurred 9 times; it was 28.2%. It revealed that when the rain fell, the slope was steeper, the slop failure happened easier.
(3) When the accumulation of rainfall depth was within 80mm, the slop failure happened 23 times; it occupied 51.06% among totally slope-failure happenings. It revealed that at the southern cross-land freeway, the probability of slope-failure occurrence was high if the rainfall depth reached 80mm at the slope of high potential failure.
(4) When the highest rainfall intensity reached 20mm/hr, there were probably a half of slopes failed. It showed that the probability of slope failure occurrence was high if the rainfall intensity reached 20mm/hr at the slope of high potential failure.
(5) Classifying the type of stratum among the 32 slope failures, the slope type belonged to the sandy-shale layer was 18; it was 56% among the total. The slope type belonged to the sandy layer was 7; it occupied 22%. The slope type belonged to the shale layer was 7; it also occupied 22% among the total.
(6)The failure of slop happened 17 times within 2 hours after the highest rainfall intensity occurred. In these failure happenings, the failures whose slope angle above 70 degrees occupied 8 out of 17 times, and the percentage was 47%. The failures whose slope angles between 60 and 69 degrees happened 4 times; it was 23.5%. The failures whose angles between 50 and 59 degrees happened 5 times; it was 29.5% among the total happenings. It showed that after a torrential rain, the slope was steeper, the slope failure happened easier.
(7) We put the data of all measure points in a coordinate plane which was used the highest rainfall intensity as the y-coordinate and rain depth accumulation as the x-coordinate. From the plane, we chose 40mm as the rain depth accumulation and 20mm/hr as the highest rainfall intensity to create a linear equation: y + 2x = 40. Except one extraordinary point, all data points were located above this line in the coordinate plane. Hence, it was the critical line of shallow layer failure at Jia-Xian ~ Tian-Chi section. On the other hand, this critical line would be a criterion for announcing the road-damage warning.
(8) In this survey, we also considered the distance between slop-failure measure point and the rainfall observatory. The distance within 5 km was 56.5% among the total. The distance between 5 km and 10 km was 41%. The distance above 10 km was 3%. Therefore, the reliability of data was higher if the distance between the measure point and the observatory was within 10 kilometer.
論文目次 摘要…………………………………………………………………Ι
目錄…………………………………………………………………Ⅱ
表目錄………………………………………………………………Ⅳ
圖目錄………………………………………………………………Ⅴ
照片目錄……………………………………………………………Ⅸ
第一章 緒 論
1-1 研究動機……………………………………………………1
1-2 研究目的……………………………………………………2
1-3 研究方法及流程……………………………………………2
第二章 文獻回顧
2-1 降雨特性與邊坡破壞關係…………………………………5
2-2 邊坡破壞時間預測…………………………………………17
2-3 邊坡破壞原因………………………………………………19
2-4 邊坡破壞型態分析…………………………………………21
2-5 邊坡災害種類………………………………………………28
第三章 研究區環境概述
3-1 地理位置……………………………………………………34
3-2 氣象水文……………………………………………………34
3-3 流域水系……………………………………………………37
3-4 人口分佈現況………………………………………………37
3-5 沿線土地利用………………………………………………39
3-6研究區之地層分佈…………………………………………39
3-7研究區之地質構造…………………………………………47
3-8研究區之歷年地層鑽探成果………………………………52
第四章 研究區域沿線邊坡歷年崩塌特性
4-1研究區域邊坡破壞型式……………………………………69
4-2研究區域崩塌地調查………………………………………70
4-3歷年降雨與崩塌量關係……………………………………71
第五章 研究區公路邊坡破壞時間量測
5-1 量測計劃之概述……………………………………………82
5-2 邊坡破壞時間量測系統……………………………………82
5-3 量測地點之選取……………………………………………86
5-4 邊坡破壞量測系統之安裝步驟……………………………86
5-5 量測結果及記錄彙整………………………………………88
第六章 量測結果分析
6-1 最大降雨強度發生時間與邊坡崩壞關係…………………108
6-2 降雨與崩壞邊坡坡度關係…………………………………109
6-3 邊坡崩壞與累積雨量之關係………………………………109
6-4 邊坡崩壞與最大降雨強度之關係…………………………111
6-5 邊坡岩性與崩壞之關係……………………………………112
6-6 邊坡最大降雨強度與崩壞邊坡坡度關係…………………113
6-7 最大降雨強度與累積雨量與坡面崩壞關係………………114
6-8 坡面崩壞點與雨量測候站距離之關係……………………115
第七章 結論與建議…………………………………………………133
參考文獻 ……………………………………………………………137
附 錄…………………………………………………………………139
參考文獻 1.田坤國,2001,〝由降雨資料預測阿里山公路邊坡破壞之研究〞,2001年公共工程學術研討會論文集,P13~P20。
2.李德河,1984,〝邊坡破壞時間之預測〞,地工技術雜誌第七期P7~P12。
3.工業技術研究院能源與資源研究所,1989,〝台灣省重要都會區環境地質資料庫〞。
4.池谷浩,1983,〝土石流預測之對策〞,武居有恆監修,鹿島出版會。P65~P70。
5.瀨尾克美、橫部幸裕,1978,〝土砂害降雨量之研究〞,新防砂,VOL.108,P14~P18。
6.國立成功大學防災研究中心,1998,〝地質危險區公路及河川橋樑之維護管理防救災對策之研擬~以台十一線及二十一線為例期末研究告〞,交通部公路總局。
7.陳時祖,,1995,〝阿里山公路沿線公路邊坡崩塌與雨量關係之研究〞, 行政院國家科學委員會,防災科技研究報告83~14號。
8.高申錡,,1994,〝 阿里山公路沿線公路邊坡崩塌與雨量關係之研究〞 ,國立成功大學資源工程研究所碩士論文。
9.青木佑久,1980,〝過去土石流降雨特徵之研究〞,土木技術,22-2,P71~P76。
10.經濟部中央地質調查所,,1989,〝玉山國家公園關山地區地質調查南橫公路地質潛在危險的研究方析〞。
11.李錫堤、王源,1985,〝台灣南部橫貫公路禮觀一帶之地層與構造〞,地質,六卷一期,P1~P20。
12.劉憲德,1990, 〝南橫公路梅山至啞口間公路沿線地質調查與研究〞,華岡地質,第六號,P36~P51。
13.經濟部中央地質調查所,2000,〝甲仙[地質圖及說明書] 〞。
14.陳肇夏、莊德永,1989,〝雪山山脈與中央山南部地質圖〞。
15.交通部公路總局第三區養護工程處,1996,〝省道20號線79K+856寶來一橋改建地質鑽探工程報告〞。
16.交通部公路總局第三區養護工程處,2002,〝省道20號線80K+807寶來二橋改建地質鑽探報告〞。
17.交通部公路總局第三區養護工程處,2000,〝省道20號線88K+500隧道新建工程鑽探報告〞。
18.交通部公路總局第三區養護工程處,1999,〝省道20號線95K+506樂農橋新建工程鑽探報告〞。
19.交通部公路總局第三區養護工程處,1999,〝省道20號線99K+241~99+500間明隧道坍塌緊急鑽探偵測工程報告〞。
20.Caine, N. , 1980, The rainfall intensity-duration control of shallow landslides and debris flows, Geografiska Annaler, V0l.62,p23~27.。
21.Keefer,D.K. ,Wilson, R.C. ,Mark, R.K. , Brabb, E.E. , Brown, W.M. , Ellen, S.D. , Harp, F.L. , Wieczoreck, O.F. , Alger, C.S. and Zatkin, R.S. ,1987,〝Real time Landslide warning during heavy rainfall〞, Science, Vol.238, p.921-925。.
22.Turner, A.K. , and Schuster, R.L. , 1996,〝Landslides Investigation and Mitigation〞,Special Report247, Transportation Research Board, National Research Council, Washington,D.C. , 673p。
23.Varnes, D J., 1978,〝Slope Movement Types and Processes in Schuster and Krizek eds Landslides-Analysis and Control〞,T.R.B Special Report 176.。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2005-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw