進階搜尋


 
系統識別號 U0026-0812200910424180
論文名稱(中文) 瀝青混凝土巨觀車轍及微觀軌跡之行為機制分析
論文名稱(英文) none
校院名稱 成功大學
系所名稱(中) 土木工程學系碩博士班
系所名稱(英) Department of Civil Engineering
學年度 91
學期 2
出版年 92
研究生(中文) 黃隆昇
研究生(英文) Long-Shen Huang
電子信箱 shen@ms1.kcg.gov.tw
學號 n6887105
學位類別 博士
語文別 中文
論文頁數 216頁
口試委員 口試委員-蕭志銘
口試委員-葉昭雄
指導教授-陳建旭
指導教授-蔡攀鰲
口試委員-梁樾
口試委員-林炳森
召集委員-周家蓓
口試委員-林志棟
口試委員-楊松隆
中文關鍵字 扁平比  排水性級配  剝脫  鋪面成效  SMA級配  車轍變形  互鎖機制  相對移動量 
英文關鍵字 pavement performance  stone mastic asphalt  porous asphalt  relative movement  interlocking mechanism  flat aggregate  stripping  rutting 
學科別分類
中文摘要 台灣地區道路鋪面總長度97﹪鋪設瀝青混凝土材料,瀝青混凝土材料主要包含瀝青膠泥、粗、細骨材、填充料及其他添加劑,長久以來骨材級配主要設計密級配,但隨著經濟快速成長,交通量呈倍率增加,且大型公共建設陸續進行,重型運輸車輛行駛頻繁,但傳統密級配瀝青鋪面因無法負荷,常見各大都市工業區聯外道路或高速公路路段,因為重車行駛,路面常產生車轍(rutting)、坑洞等損壞,降低鋪面成效(pavement performance),工程單位需經常性維修。
此外台灣地區颱風季節時,豪雨持續不斷,像近幾年來桃芝、薇美颱風來襲,南部地區持續不斷豪雨,暴雨強度遠超過以往之洪水頻率,造成諸多路面嚴重積水,交通因而堵塞及影響行車安全。
道路同時承受龐大載重及雨水侵襲之危害。石膠泥瀝青混凝土鋪面(stone mastic asphalt,或稱為stone matrix asphalt,SMA),藉由粗骨材間穩固之互鎖機制(interlocking mechanism),具有良好抗車轍變形能力;排水性鋪面(drainage pavement),又稱為多孔性瀝青混凝土(porous asphalt, PA)鋪面,藉由高空隙率,具有快速排除積水之能力。這兩種骨材級配在國外已普遍被使用,國內目前各道路工程單位也逐漸能接受,惟多直接參照國外之材料設計規範,尤其各砂石廠產製骨材時,扁平比多偏高,扁平骨材含量之控制,以及對SMA級配及排水性級配瀝青混凝土鋪面性質之影響,應於鋪設前,詳細評估其材料特性,以發揮其效益,以免因對材料特性不瞭解,鋪設後未能達到預期效益,反而減低其鋪面特性。
本研究即針對SMA級配及排水性級配,進行滲透剝脫、間接張力強度、車轍變形等試驗,並再運用影像處理技術,微觀觀察載重過程中粗骨材移動軌跡及互鎖機制變化,藉由巨微觀試驗及分析,完整剖析材料特性,作為道路工程單位鋪設及維修之參考。
在雨水滲透性質部分,SMA級配浸水後水分不易滲入而停留於瀝青與骨材外,且包覆骨材之瀝青薄膜厚度較厚,具有抑制水分滲透之能力。而空隙率對排水性級配抗水分滲透能力影響最大, SMA級配產生剝脫程度主要與空隙連通性有關,與浸水時間影響不大;排水性級配、密級配產生剝脫現象主要與內部空隙大小、空隙連通性及浸水時間有關。
未添加扁平骨材時,SMA級配最具抗車轍能力;排水性級配次之;密級配最差。若添加扁平骨材,SMA級配建議控制在20﹪以下;排水性級配需嚴格選擇粗骨材形狀,避免使用扁平骨材,密級配建議需在40﹪以下。
未添加扁平骨材時,SMA級配骨材顆粒於滾壓前後,角度分布頻率多集中於0~20°角度較低之區間,排水性級配多集中於角度20°~30°區間,密級配分布頻率平均。粗骨材移動角度接近於水平且移動量較小時,應為骨材構架處於最穩定階段。
骨材級配滾壓過程水平及垂直相對移動量維持在2mm以下,可維持穩定互鎖機制;添加扁平骨材後,相對移動量增加至8mm以上,則互鎖機制會降低,粗骨材構架逐漸破壞,抗車轍能力降低。
扁平骨材用量、特徵參數及骨材相對移動量變化等因素,影響瀝青混凝土鋪面成效,由統計程式建立及預測SMA級配、排水性級配及密級配鋪面抗車轍能力指標因子,可得知鋪面在實際開放交通後,最直接影響之參數,提供道路工程單位於鋪設或維修時之參考,有效掌握其材料特性,節省瀝青混凝土鋪設及維修費用,冀能提升國內道路之品質,並維持路面高服務水準。
英文摘要 none



論文目次 目錄
摘要
第一章、緒論
1-1 前言…………………………………..….………………………..…..18
1-2 研究動機……………………………..….…………….…………..….21
1-3 研究目的………...……………………………………….………..….21
第二章、研究文獻回顧
2-1 瀝青混凝土骨材級配……...…………………………………………23
2-1-1密級配瀝青混凝土…..……..…………………..……………....23
2-1-2 SMA石膠泥瀝青混凝土…...……………..….…..………..…..24
2-1-3多孔性瀝青混凝土……..……………………..………………..26
2-2骨材特徵參數對瀝青混凝土之影響………...……..………………..27
2-2-1扁平骨材對瀝青混凝土性質之影響…..……………………..27
2-2-2骨材形狀對瀝青混凝土性質之影響………..….……………..29
2-3瀝青混凝土車轍行為….…………………….……..….……………..30
2-4 瀝青混凝土載重過程骨材顆粒軌跡……...………………………..33
2-5 影像處理分析技術…………….………………………………..…..38
2-5-1 影像數值化……..….…..……………………………………..40
第三章、研究方法與流程
3-1 研究流程…………………………………….………….…..………...45
3-2 瀝青膠泥基本性質…………………………...…………..…………..47
3-3 骨材基本性質……………………..…………………….…………....48
3-3-1 粗骨材形狀………………………….…………….…………...49
3-3-2 骨材級配……………………..…….………….……………...50
3-3-3 扁平骨材含量………………………………………………...53
3-4 瀝青混凝土巨觀成效性質試驗…………….…..…………………55
3-4-1 滲透試驗……………………..………………………….……55
3-4-2 剝脫試驗……………..…….....…...…………..…….…………56
3-4-3 粗骨材互鎖機制範圍…………………………..….…………57
3-4-4 間接張力強度試驗…………..….....…………..….….….….....59
3-4-5 車轍試驗…………………………...…..……….…………....…60
3-5 瀝青混凝土微觀性質…………………….………………….……...64
3-5-1 影像處理分析軟體…..…………………..….………………..64
3-5-2 影像處理分析…………...…………………………..………..65
3-5-3 影像二值化……..………………………….…………..……..65
3-5-4 骨材特徵參數分析…..……………………………….…..…..66
3-5-5 載重過程骨材軌跡分析…..…………….…………………....67
3-5-6 載重過程粗骨材互鎖機制分析…..………….……………....71
第四章、瀝青混凝土級配巨觀性質評估
4-1 瀝青混凝土配合設計試驗……………………………..………...…..74
4-2 不同骨材級配滲透性與空隙率……………………..………….……76
4-3 不同骨材級配剝脫浸蝕機制………….………………………..……79
4-3-1 浸水剝脫對瀝青混凝土力學性質之影響……………………79
4-3-2 浸水時間對瀝青混凝土力學性質之影響………..…………81
4-3-3 加壓剝脫對瀝青混凝土力學性質之影響……………………82
4-3-4 水分滲透對瀝青混凝土抗車轍能力之影響…………..…….84
4-4 互鎖機制對瀝青混凝土力學性質之影響..…..………..…..………86
4-4-1 粗骨材含量對最佳互鎖機制範圍之影響……………..……87
4-4-2 粗骨材含量對間接張力強度之影響…………….……..……88
4-4-3粗骨材含量對回彈模數之影響………….………..…………90
4-4-4粗骨材含量對抗車轍能力之影響………...…………………90
4-5 扁平骨材含量對瀝青混凝土抗車轍能力之影響………….………92
4-6 車轍過程動穩定值分析…………………….………………………96
第五章、瀝青混凝土粗骨材微觀特徵參數
5-1 粗骨材顆粒特徵參數變化……………..….…………..……...…….101
5-1-1 SMA級配粗骨材特徵參數變化………………......………..102
5-1-2 排水性級配粗骨材特徵參數變化..…………..………..…..106
5-1-3 密級配粗骨材特徵參數變化…………...…...………...……..109
5-1-4 不同骨材級配特徵參數比較……………..…………….……112
5-1-5 不同骨材級配抗車轍能力特徵參數分析……..………….…113
5-2 滾壓過程粗骨材級配變化…….…..…………………..…………...114
第六章、瀝青混凝土粗骨材向量軌跡行為分析
6-1 瀝青混凝土粗骨材連續變化軌跡……………….…….……...…….117
6-1-1 常態分佈及機率密度函數….…………………..….…..……..118
6-2 SMA級配粗骨材軌跡向量分析…………….………….………….119
6-2-1 SMA級配粗骨材移動變化….…………………….……..……119
6-2-2 SMA級配粗骨材移動軌跡與車轍量………..……..…...……125
6-2-3 SMA級配添加扁平骨材比較…..…………..…………...……128
6-3 排水性級配粗骨材軌跡向量分析………..………….…....……….130
6-3-1 排水性級配粗骨材移動變化……..………..…..……………130
6-3-2 排水性級配粗骨材移動軌跡與車轍量….……………..……135
6-3-3 排水性級配添加扁平骨材比較…..…………….……..……137
6-4 密級配粗骨材軌跡向量分析…….…….……………………….….138
6-4-1 密級配粗骨材移動變化…………….…………..…..……139
6-4-2 密級配粗骨材移動軌跡與車轍量…...…………....……144
6-4-3 密級配添加扁平骨材比較…………………..……..……147
6-5 不同骨材級配扁平骨材含量巨微觀性質比較……………….……148
第七章、瀝青混凝土粗骨材互鎖機制行為分析
7-1 粗骨材連續移動軌跡………………………………..……..………..151
7-1-1 SMA級配粗骨材連續移動軌跡………..……….……..……..152
7-1-2 排水性級配粗骨材連續移動軌跡………………………..…..155
7-1-3 密級配粗骨材連續移動軌跡………………………..……...157


7-2 粗骨材互鎖機制分析…………………………..……..………..……159
7-2-1 SMA級配粗骨材互鎖機制分析….…………….……..……161
7-2-2 排水性級配粗骨材互鎖機制分析……………….……..……163
7-2-3 密級配粗骨材互鎖機制分析……………….…………..……165
7-3 瀝青混凝土抗車轍能力指標因子分析………………..….………..167
7-3-1 SMA級配抗車轍能力指標因子分析….………….….……..168
7-3-2 排水性級配級配抗車轍能力指標因子分析….……………..170
7-3-3 密級配級配抗車轍能力指標因子分析……..……..………..173
八、結論與建議
8-1 結論………….………..……………………………………….……..176
8-2 建議………….………..…………………………………..……..181
參考文獻
自述
參考文獻 日本道路協會,「排水性鋪裝技術指針」(1996)。
井上武美,「SMA のか我國における展開」,鋪裝,Vol.35,第.4-10頁(2000)。
吉兼享、中西弘光,「多孔隙排水面層之設計與施工技術考察報告」,多孔隙排水性鋪面研討會,台北,交通部台灣區國道高速公路局(1999)。
林志棟、蕭良豪,「SMA和密級配瀝青混凝土抗車轍能力之比較」,第八屆鋪面工程學術研討會,中壢,第93-102頁(1994)。
林志棟、鍾權淇、王睿懋,「應用數位影像分析探討瀝青混凝土之粒料結構」 ,第一屆鋪面工程師生研究成果聯合發表論文集,中壢,第96-106頁(2000)。
范俊海、周家蓓、李綱,「鋪面裂縫類神經網路識別系統」,第七屆鋪面工程研討會,台北,第323-333頁(1993)。
沈金安,改性瀝青與SMA路面,人民交通出版社,中國(1999)。
黃偉慶、李宜隆、郭欽煌,「應用影像解析儀探討砂土組構」,第六屆大地工程學術研討會,嘉義,第289-298頁(1995)。
鼎漢國際顧問工程公司,「八十八年下半年度高雄市道路交通量特性調查」,高雄市政府工務局新建工程處,高雄(2001)。
廖溪堃,「材料對石膠泥瀝青混凝土成效特性影響之研究」,碩士論文,國立中央大學土木工程研究所,中壢(1998)。
蔡攀鰲,瀝青混凝土材料試驗與配合設計,三民書局,台北(1984)。
蔡攀鰲,陳建旭,黃隆昇,陳虹潔,「粗骨材型態與組構對石膠泥瀝青混凝土力學行為之影響」,中國土木水利工程學刊,第十三卷,第四期,第827-838頁(2001)。
蔡攀鰲,「排水性瀝青混凝土國、內外發展概況」,排水性瀝青混凝土鋪面特輯,中華鋪面工程學會,台南,第1-3頁(2002)。
Aho, B.D., Vavrih, W.R., and Carpenter, S.H., “Effect of Flat and Elongated Coarse Aggregate on Field Compaction of Hot Mix Asphalt,” Transportation Research Board 80th Annual Meeting, Washington, D.C.(2001).(on CD-ROM)
Bochove, G.G., ”Porous Asphalt – Optimizing and Testing,” 2nd Eurasphalt & Eurobitume, Spain(2000). (on CD-ROM)
Brown, E.R., “Evaluation of Stone Mastic Asphalt Used in Michigan in 1991,” Transportation Research Board, 1427, pp.54-60(1993).
Brown, E.R., and Mallick, P.B., “Evaluation of Stone-on-Stone Contact in Stone Matrix Asphalt,” Transportation Research Record 1492, pp.208-219(1995).
Brown, E.R., Haddock, J.E., and Crawford, C., ”Investigation of Stone Matrix Asphalt Mortars,” Transportation Research Record, 1583, pp.95-102(1996).
Brown, E.R., Haddock, J.E., Mallick, R.B., and Lynn, T.A., “Development of a Mixture Design Procedure for Stone Matrix Asphalt(SMA),” Journal of the Association of Asphalt Paving Technologists, Vol.66, pp.1-30(1997).
Brown, E.R., Haddock, J.E., Mallick, R.B., and Bukowski, J.,”Performance of Stone Matrix Asphalt(SMA)Mixtures in the United States,”Journal of the Association of Asphalt Paving Technologists, Vol.66, pp.426-457 (1997) .
Brown, E.R., Haddock, J.E., Mallick, R.B., and Bukowski, J., Performance of Stone Matrix Asphalt(SMA)Mixtures in the United States, National Center for Asphalt Technology Report, No.97-1(1997).
Brown, E.R., and Cooley, L.A., Designing Stone Matrix Asphalt Mixtures for Rut-Resistant Pavements, National Cooperative Highway Research Program, Report 425, Washington, D.C.(1999).
Casagranda, A., and Sofronis, P., “Numerical Observation of Scaling laws in the Consolidation of Powder Compacts,” Acta Materials, Vol.45, No.11, pp.4835-4845(1997).
Chang, K.N., and Meegoda, J.N., “Micromechanical Simulation of Hot Mix Asphalt,” Journal of Engineering Mechanics, Vol.123, No.5, pp.495-503 (1997).
Chen, J.S., Shiah, M.S., and Chen, H.J., “Quantification of Coarse Aggregate Shape and its Effect on Engineering Properties of Hot-Mix Asphalt Mixtures,” Journal of Testing and Evaluation, ASTM, Vol.29, pp.513-519(2001).
Chetana, R., Tutnmluer, E., and Kim, T., “Quantification of Coarse Aggregate Angularity Based on Image Analysis,” Transportation Research Board 81st Annual Meeting , Washington, D.C.(2002).(on CD-ROM)
Cheung, L.W., and Dawson, A.R., “The Effect of Particle and Mix Characteristics on the Performance of some Granular Materials,” Transportation Research Board 81st Annual Meeting, Washington, D.C.(2002).(on CD-ROM)
Curray , J. R.,”Analysis of Two Dimensional Orientation Data,” Journal of Geology , Vol. 64, pp. 117-131 (1956).
Curtis, C.W., Terrel, R. L., Perry, L. M., Swailm, S. A. and Braanan, C. J., Importance of Asphalt-Aggregate Interaction in Adhesion, Strategic Highway Research Program, pp. 477~ 531. (1980).
David, J.F., and Kuo, C.Y., “Automated Determination of the Distribution of Local Void Ratio from Digital Image,” Geotechnical Testing Journal, Vol.19, pp.107-117(1996).
European Asphalt Pavement Association, Heavy Duty Surface:The Arguments for SMA, Breukelen, Nethelands(1998).
Federal Highway Administration, Stone Mastic Asphalt Mixture Design, FHWA-RD-92-006, Mclean, Virginia(1992).
Freeman, R.B., Burati, J.L., Amirkhanian, J.S., and Bridge, W.C.,“Polyesteer Fibers in Asphalt Paving Mixtures,” Journal of the Association of Asphalt Paving Technologists, Vol.48, pp.387-408(1989).
Heystraeten, G. V. and Moraux, C., ”Ten Years’ Experience of Porous Asphalt in Belgium,” Transportation Research Record, 1265, pp.34-40(1990).
Hughes, C.S., Designing and Constructing SMA Mixtures-State-of-the-Practice, National Asphalt Pavement Association, Quality Improvement Series 122, pp.1-44(1997).
Isenring,T.H., Koster, and Scazziga, I., ”Experiences with Porous Asphalt in Switzerland,” Transportation Research Record , 1265, pp.41-53(1990).
Jensen, R.P., Bosscher, P.J., Plesha, M.E., and Edil, T.B., “Dem Simulation of Granular Media-Structure Interface:Effects of Surface Roughness and Particle Shape,” International Journal for Numerical and Methods in Geomechanics, 23, pp.531-547(1999).
Kandhal, P.S., Lynn, C.Y., and Parker, F., “Characterization Tests for Mineral Fillers Related to Performance of Asphalt Paving Mixture,” Transportation Research Record, 1638, pp.101-110(1999).
Khedaywi, T.S., and Tons, E., “Aggregate Rugosity and Size Effect on Bituminous Mixes,” Transportation Research Record, 1619, pp.26-36(1998).
Kuo, C.Y., Rollings, R.S., and Lynch, L.N., ”Morphological Study of Coarse Aggregates Using Image Analysis,” Journal of Materials in Civil Engineering, Vol.10, pp.135-142(1998).
Kuo, C.Y., Frost, J.D., Lai, J.S., and Wang, L.B., “Three-Dimensional Image Analysis of Aggregate Particles from Orthogonal Projections,” Transportation Research Record, 1526, pp.98-103(1996).
Lynn, T.A., Brown, E.R., and Cooley, L.A., “Evaluation of Aggregate Size Characteristics in Stone Matrix Asphalt and Superpave Mixtures,” Transportation Research Board, 1681, pp.19-27(1999).
Masad, E., Muhunthan, B., Shashidhar, N., and Harman, T., “Aggregate Orientation and Segregation in Asphalt Concrete,” Application of Geotechnical Principles in Pavement Engineering, Geotechnical Special Publication, #85, ASCE, pp.69-81(1998).
Masad, E., Muhunthan, B., Shashidhar, N.,and Harman, T., ”Quantifying Laboratory Compaction Effects on the Internal Structure of Asphalt Concrete,” Transportation Research Record, 1681, pp.179-185 (1999).
Masanori, S. N.,” The Influence of Shape Properties of Crushed Stone Aggregate on Deformation Phenomenon of Asphalt Mixture,” Proceedings of the Japan Society of Civil Engineering , Vol.11, No.408, pp.41-50 (1989).
Mogawer, W.S., and Stuart, K.D., “Effect of Coarse Aggregate Content on Stone Matrix Asphalt Rutting and Draindown,” Transportation Research Record , 1492, pp.1-7(1995).
Moncy, H.W., King, G.N., and Prudhomme, J.B., “Improved Rheological Properties of Polymer-Modified Asphalts,” Polymer Modified Asphalt Binders, ASTM STP 941, pp. 146~165(1987).
National Asphalt Pavement Association(NAPA), Guideline for Materials, Production, and Placement of Stone Matrix Asphalt(SMA), SMA Technical Working Group(TWG), NAPA, Maryland(1996).
Nikolaids, A., “Rutting and Volumetric Properties of SMA Mixture,” Proceedings Institution of Civil Engineers Transport, Vol.141, No.3, pp.135-141(2000).
Oduroh, P.K., Mahboub, K.C., and Anderson, R.M., “Flat and Elongated Aggregates in Superpave Regime,” Journal of Materials in Civil Engineering, Vol.12, pp.124-130(2000).
Ohkawa, H., Sato, T., and Hokari, K., ”Study on The Estimation of Permeability Coefficient of Drain Asphalt,” Journal of Structural Mechanics and Earthquake Engineering, Vol. 21, No. 178, pp. 101-108(1993).
Pasetto, M., ”Porous Asphalt Concretes with Addied Microfibers,” 2nd Eurasphalt & Eurobitume, Spain(2000). (on CD-ROM)
Ruiz, A.R., Alberola, P.F., and Scazziga, B., ”Porous Asphalt in Spain,” Transportation Research Record , 1265, pp.87-94(1990).
Santucci, L., “Rut Resistant Asphalt Pavement,” Pavement Research Center, Institute of Transportation Studies, University of California, Berkeley,pp.1-8(1998).
Scherocman, J.A., “Construction of Stone Mastic Asphalt Test Sections in the U.S,” Journal of the Association of Asphalt Paving Technologists, Vol.61, pp.642-658 (1992) .
Schroder, I., and Kluge, H.J., ”Experiences with SMA,” Bitumen, 4/92, pp1-10(1992).
Stuart, K. D., “Moisture Damage in Asphalt Mixture-A State of The Art Report,” Research Report for Federal Highway Administration, Virginia, FHWA-RD-90-19 (1990).
Vavrik, W.R., Fries, R.J., and Carpenter, S.H., “Effect of Flat and Elongated Coarse Aggregate on Characteristics of Gyratory Compacted Samples,” Transportation Research Record, 1681, pp.28-36(1999).
Wang, L.B., Frost, J.D., and Lai, J.S., “Noninvasive Measurement of Permanent Strain Field Resulting from Rutting in Asphalt Concrete,” Transportation Research Board, 1687, pp.85-94(2000).
Witczak, M.W., Bonaquist, R., Quintus, H.V., and Kaloush, K., “Specimen Geomentry and Aggregate Size Effects in Uniaxial Compression and Constant Height Shear Tests,” Journal of the Association of Asphalt Paving Technologists, Vol.69, pp.733-793 (2000) .
Yoon, H. H. and Tarrer, A. R., “Effect of Aggregate Properties on Stripping,” Transportation Research Record, 1171, pp. 37-43 (1988).
Yue, Z.Q., Bekking, W., and Morin I., ”Application of Digital Image Processing to Quantitative Study of Asphalt Concrete Microstructive,” Transportation Research Record, 1492, pp.53-60(1995).
Yue, Z.Q., Bekking, W., and Morin I., ”Digital image Processing for Aggregate Orientation in Asphalt Concrete Mixtures,” Canadian Journal of Civil Engineering, pp.480-489(1996).
Zhu, H., and Juile., E.N., “Contact based Analysis of Asphalt Pavement with the Effect of Aggregate Angularity,” Mechanics of Materials, Vol.32, No.3, pp.193-202(2000).
Zing, T., “Bietrahe Zur Schotteranalyse,” Schweiz, Mineral Petrography Mitt, Vol.15, pp.39-140 (1935).
Zoorob, S.E., and Suparma, L.B., “Air Permeability Characteristics of Continuous and Gap Graded Bituminous.” 2nd Euroasphalt and Eurobitume Congress, Barcelona, Book Ⅱ, pp.699-707(2000).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2003-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2003-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw