進階搜尋


 
系統識別號 U0026-0812200910420377
論文名稱(中文) 奈米濾膜阻塞現象之研究
論文名稱(英文) Study on the Fouling Phenomena of NF Membrane
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 91
學期 2
出版年 92
研究生(中文) 林宏儒
研究生(英文) Hon-Ru Lin
學號 p5690124
學位類別 碩士
語文別 中文
論文頁數 90頁
口試委員 指導教授-葉宣顯
口試委員-楊金鐘
口試委員-林財富
中文關鍵字 NF  腐植酸  藻酸  薄膜  阻塞  錯合 
英文關鍵字 humic acid  complex  Nanofiltration  membrane  fouling  Alginic acid 
學科別分類
中文摘要 NF薄膜程序可同時去除病毒、溶解性有機物及硬度,並保留適當礦物質,達適飲性水質。然而運用難題在於薄膜阻塞,所引起濾程之縮短。故本研究以桌上型薄膜模組進行過濾程序,了解阻塞現象,包括薄膜表面結構、pH、掃流速度、溶質物種及其交互作用等因素,以期改善處理效能。結果顯示粗糙度大的薄膜表面,易於凹處沉積微粒,不利清洗後的清水通量恢復。
高pH時,雜質與薄膜的表面電位均較負,故有較大靜電斥力,可明顯提高去除率。僅含背景鹽之溶液的清水通量在等電位點有其峰值。含鈣有機物的清水通量,以錯合鈣為主導,高pH高阻塞。高掃流速度可減低阻塞程度,亦可降低離子濃度極化效應,進而提高鈣離子及導電度去除率,但對溶解性有機碳的去除率影響不大。
單一雜質試驗中,比較同濃度之3種溶解性有機物 (DOM)、4種Particles及Ca2+,結果顯示NF薄膜在相同操作條件下,除水楊酸以外,均有相似的清水通量下降趨勢,不因物種因素而有太大差異。且當進流濃度控制在某範圍時,濾餅形成後,即使薄膜不清洗,清水通量仍相當穩定。
混合溶質試驗中,於Particles、DOM、Ca2+之間,做任兩物種混合液之比較,結果顯示因DOM與Ca2+會產生錯合,而在膜面上形成密緻吸附膠層,使得NF薄膜之阻塞最嚴重。故對NF膜的前處理,去除Ca2+與DOM其中任一種或防其化學鍵結,比去除Particles更重要。
有機物在含鈣的情況下,藻酸的阻塞程度高於腐植酸,推測其主因為錯合鈣量較高。此結果意味著對優養化的水源,進行NF薄膜處理,是比一般天然有機物水源不利,需有適當的前處理單元。再者於比較鈣和有機物何者居多的阻塞程度,吾人得到去除有機物尤重於去除鈣的觀念。故相對於Particles或Ca2+,DOM對於NF膜的阻塞佔更重要角色。
比較含鈣有機物的阻塞沉積量與鈣錯合量對阻塞程度的相關性,發現無論進流水是含腐植酸或藻酸,均以鈣錯合量對阻塞程度的相關係數較高,故以鈣錯合量作為NF膜的有機物阻塞指數,應用於實際天然水源,可改善以往僅用LSI及SDI為薄膜阻塞指數的預測準確性,而為添加酸劑及抑垢劑提供最佳劑量的參考。
英文摘要 Nnanofiltration membrane can remove greater part of natural organic matter (NOM), precursor of disinfection by-products, and multivalent ions. Its rejection of monovalent ions is much lower than that of multivalent ions, and therefore retains some of the mineral substances in the permeate. However, the major problem of applications is the fouling of membrane. In this research, Rapid Bench Scale Membrane Test (RBSMT) is used to study the factors affecting the fouling of the NF membrane. Those factors studied include membrane surface morphology, cross-flow velocity, and water quality of the feed water, such as pH, type and concentration of the solute and suspended solids.
The results show the rougher the membrane surface is, the easier the fouling in valley, and unfavorable in flux recovery rate by cleaning. Increasing cross-flow velocity could reduce concentration polarization and fouling rate, and increase rejection rate for calcium and conductivity. However, its affect on dissolved organic carbons (DOC) rejection was minor.
And impurities rejection increased with increasing pH. This probably is due to the higher electrostatic repulsive force between impurities and membrane surface, as both usually gain more negative charge at higher pH. For feed water consisted of pure water and background electrolyte (0.003 M NaClO4), the flux has highest value at isoelectric point of the membrane. For feed water contained calcium and organics, flux was mainly affected by complexed calcium.
For single species impatrity testing, comparing the same concentration of salicylic acid, alginic acid, humic acid, 0.1 μm SiO2, 0.01 μm SiO2, kaolin, bentonite and Ca2+, results show that NF membrane have the same flux decline under the same operation condition, regardless of the kinds of solutes, except for salicylic acid. The higher the pH value, the higher the flux decline rate. For feed water contained organics without calcium, flux was mainly affected by their solubility in water. And when impurity concentration was in certain range, after cake formation and initial flux decline, the flux value would remain at certain value for long time, even without cleaning.
For dual impurities testing, it is noticed that systems containing dissolved organic matter (DOM) and calcium have the highest fouling rate. This is probably due to the formation of tenacious gel layer, made from the adsorption of DOM-Ca complex membrane surface. Therefore, in the preatment of NF, the removal of either DOM or Ca is more important than removing particles.
When DOM was mixed with Ca, the fouling of alginic acid was more serious than humic acid, probably because the quantity of complexation formation of the former was larger than that of the latter. This also indicates that when the source water of a NF system is entrophic, the pretreatment to prevent excessive fouling is especially important. Comparing the fouling phenomena with feed water under various concentration ratio of Ca and DOM, we notice that the role palyed by DOM is more significant than that of Ca or particles.
Finally, comparing the correlation between surface deposition quantity and flux decline rate versus that between calcium complexation qantity and flux decline rate, it was found the correlation between the latter was stonger, no matter the DOM involved was humic acid or alginic acid. Therefore, calcium complexation quantity may be used as fouling index in the field.
論文目次 摘要 Ⅰ
Abstract Ⅱ
謝誌 Ⅳ
表目錄 Ⅷ
圖目錄 Ⅸ

第一章、緒論 1

第二章、文獻回顧 3
2 – 1、薄膜性質與規範 3
2 – 1 – 1 薄膜之種類、材質及應用 3
2 – 1 – 2 奈米濾膜之特性及原理 6
2 – 1 – 3 奈米濾膜之優點及應用 9
2 – 1 – 4 奈米濾膜之缺點及限制 10
2 – 2、溶質物種 11
2 – 2 – 1 無機鹽濃度 12
2 – 2 – 2 粒狀物數量 14
2 – 2 – 3 天然有機物 16
2 – 3、影響薄膜性能之操作因素 19
2 – 3 – 1 操作壓力之影響 19
2 – 3 – 2 進流溶液濃度之影響 20
2 – 3 – 3 pH 值之影響 21
2 – 3 – 4 離子強度之影響 23
2 – 3 – 5 回收率之影響 24
2 – 3 – 6 溫度之影響 24
2 – 4、阻塞指數和質傳模式 25
2 – 4 – 1 阻塞指數 25
2 – 4 – 2 質傳現象 28
第三章、實驗設備與方法 31
3 – 1、實驗流程 31
3 – 2、實驗材料 33
3 – 2 – 1過濾薄膜之材質與特性 33
3 – 2 – 2水樣雜質之種類 35
3 – 2 – 3模擬天然有機物 (Nature organic matter)之特性 36
3 – 2 – 4膠體顆粒 (Colloidal particles)之特性 37
3 – 3、實驗設備 40
3 – 3 – 1 快速桌上型薄膜試驗設備 40
3 – 4、實驗步驟與方法 42
3 – 4 – 1 新薄膜之清水基線 (Base Line) 42
3 – 4 – 2 經溫度校正之流量 42
3 – 4 – 3 常規化比通量 (normalized specific flux) 及通量下降 43
3 – 4 – 4 薄膜的保存與清洗 43
3 – 4 – 5 薄膜表面的溶質沉積量 (mg/cm2)之量測 43
3 – 4 – 6 一般操作條件 44
3 – 5、各項水質參數之分析 45
3 – 5 – 1 pH值及導電度 (Conductivity)測定 45
3 – 5 – 2 非揮發溶解性有機碳(NPDOC)之分析 45
3 – 5 – 3 UV分光光度計之吸光分析法 46
3 – 5 – 4 水中粒子數之測定 46
3 – 5 – 5 界達電位 (Zeta potential)之量測 47
3 – 5 – 6 濁度 (Turbidity)之量測 49
3 – 5 – 7 硬度 (Hardness)之分析 50
3 – 5 – 8 自由鈣離子與錯合鈣 (Complexed Calcium)之分析 51


第四章、實驗結果與討論 53
4 – 1、單一溶質物種之比較 53
4 – 1 – 1 不同物種原始本質的清水通降 (flux decline) 與去除率 53
4 – 1 – 2 在相同操作條件之清水通降與去除率 56
4 – 1 – 3 薄膜表面結構的影響 58
4 – 1 – 4 調整pH的影響 61
4 – 1 – 5 掃流速度的影響 65
4 – 1 – 6 離子強度的影響 68
4 – 2、混合溶質物種之比較 69
4 – 2 – 1 鈣對Particles清水通降的影響 69
4 – 2 – 2 鈣對Particles與DOM清水通降之比較 70
4 – 2 – 3 鈣對DOM清水通降的影響 73
4 – 2 – 4 鈣與DOM何者居多對阻塞較嚴重 80

第五章、結論與建議 81
參考文獻 84
附錄 88
參考文獻 [1] Lyonnaise, D. E., Water treatment membrane process, AWWA Research Foundation (1996).
[2] Pontalier, P. Y., Mechanisms for the selective rejection of solutes in nanofiltration membranes, Separation and Purification Tech. v.12, 2 (1997) 175–181
[3] Peeters, J.M.M., Retention measurements of nanofiltration membranes with electrolyte solutions, J. of Membr. Sci. 145 (1998) 199-209
[4] Braghetta, A., Francis, A. D., Nanofiltration of natural organic matter : pH and ionic strength effects, J. of Environ. Engi. (1997).
[5] IRC manual for bench- and pilot-scale treatment studies, EPA 814/B-96-003 , April (1996).
[6] Noble, R.D., Membrane separations technology principles and applications (1999).
[7] FilmTec membranes technical manual, April (1995).
[8] Taylor, J. S. and Mulford L. A., Membrane protocol to meet the ICR, presented at the AWWA Membrane Technology Conference, August 13-16, Reno, Nev. (1995).
[9] Laîne’, J. M., and Anselme, C., Impact varies pretreatment on nanofiltration Performance in treating water, presented at the AWWA Membrane Technology Conference, August 13-16, Reno, Nev (1995).
[10] Yiantsios, S.G., The effect of colloid stability on membrane fouling, Desalination, Vol. 118, 3 (1998) 143-152
[11] Chellam, S., Jacangelo, J.G., Bonacquisti, T. P., and Schauer, B. A., Effect of pretreatment on surface water nanofiltration, J. AWWA, 89 (1997)10-77.
[12] Leenheer, J.A, Characterization and digenesis of strong-acid carboxyl groups in humic substances, Applied Geochemistry 18 (2003) 471-482
[13] Croue, J. P., Characterization of natural organic matter in drinking water, AWWA Research Foundation (2000).
[14] Schnitzer, M., Characterization of organic matter associated soil clay, Soil Sci. 145 (1988) 448-454.


[15] Plummer, J. D.; Edzwald, J. K., Effect of ozone on disinfection by-product formation of algae, Water Sci. and Tech. 37 (1998) 49-55.
[16] Nilson, J. A. and DiGiano F. A., Influence of NOM compostion on nanofiltration, J. AWWA (1996) 53-66
[17] Cheng, F. L., Effects of humic substance characteristics on UF performance, Wat. Res. (2000) 1097-1106.
[18] Schäfer, A. I., Fane, A. G., and Waite, T.D., Nanofiltration of nature organic matter: removal, fouling, and the influence of multivalent ions, Desalination, (1998) 118.
[19] Jucker, C., Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes, J. of Membr. Sci. 97 (1994) 37-52.
[20] Vrouwenvelder, H. S., Biofouling of membranes for drinking water production, Desalination, 118 (1998) 157-166.
[21] Souriraian, S., Characteristics of porous cellulose acetate membranes for the separation of some organic substances in aqueous soultions, I&EC Prduct Research and Development, 4 (1996) 201-206.
[22] Childress A. E., Menachem Elimelech, Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics, Environ. Sci. Technol. 34 (2000) 3710-3716.
[23] Cheryan, M., Ultrafiltration and microfiltration handbook, Technomic (1998) 46.
[24] Schippers, J. C., and Verdouw, J., The modified fouling index, a method of fouling characteristics of water, Desalination 32 (1980) 137.
[25] Sung, L. K. and Taylor, J. S., Using film theory and ion coupling to model mass transfer in diffusion controlled membrane system, In proceedings of the 1995 membrane technology conference, Reno, Nevada. (1995)
[26] Belfort, G., Fluid mechanic of membrane modules, J. of Membr. Sci., 40 (1989) 123-147.
[27] Gregor, J. E., Interactions of calcium and aluminum ions with alginate, Water Res. 30 (1996) 1319–1324.
[28] Maxime, P., Effect of aging on UF membranes by astreaming potential (SP) method, J. of Membr. Sci., 154 (1999) 213 – 220.
[29] Wei Y., Humic acid fouling during microfiltration, J. of Membr. Sci., 157 (1999) 1– 12.
[30] Osmonics, SEPA CF membrane cell instruction manual (1995).

[31] Vrijenhoek, E. M., Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes, J. of Membr. Sci. 188 (2001) 115-128.
[32] Bowen, W. R.; Tedora. D., Atomic microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion, Desalination, 129 (2000) 163 – 172.
[33] Seungkwan, H., Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes, J. of Membr. Sci., 132 (1997) 159-181
[34] Amy, G., NOM rejection by, and fouling of NF and UF membranes, AWWA Research Foundation (2001).
[35] 葉宣顯等人,本省自來水水源中溶解性有機物成分之分析及現有淨水程序對其去除效率之評估,台灣省自來水股份有限公司研究報告 (1998)。
[36] 楊子岳,桌上型快速薄膜試驗評估NF薄膜程序在表面水處理上之運用,國立成功大學碩士論文 (1999)。
[37] 高山鎮,薄膜阻塞控制之研究,國立成功大學碩士論文,(2000)。
[38] 林俊德,極微濾薄膜在自來水淨水工程上之應用,國立交通大學碩士論文 (2000)。
[39] 葉宣顯等人,澄清湖高級淨水處理模型廠試驗研究 (第二年),台灣省自來水股份有限公司研究報告 (2001)。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2006-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2006-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw