進階搜尋


 
系統識別號 U0026-0812200910410825
論文名稱(中文) 具非對稱型磁滯系統控制及其於壓電驅動平台定位控制之應用
論文名稱(英文) Control of System with Asymmetric Hysteresis and its Application to Piezo Driven Stage Positioning Control
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 91
學期 2
出版年 92
研究生(中文) 李傑仁
研究生(英文) Chieh-Jen Lee
學號 p4690421
學位類別 碩士
語文別 中文
論文頁數 66頁
口試委員 口試委員-謝成
指導教授-陳介力
口試委員-馮榮豐
口試委員-黃衍任
中文關鍵字 前饋控制  壓電驅動平台  磁滯現象 
英文關鍵字 piezo driven stage  hysteresis  feedforward control 
學科別分類
中文摘要 本文之主要目的在建立一精確的磁滯模型,據以設計控制器以期達到系統高精度定位之要求。在建立磁滯模型方面,本文採用切換系統的觀念來描述Preisach型磁滯,將建模的過程系統化,使參數的選取定性化與步驟化,並配合RIP圖形解釋磁滯行為之輸出與輸入間的關係,使磁滯模型更加完備。本研究以壓電驅動平台為對象,由數值模擬與實驗結果比對,顯示本文提出之建模方法能精確的描述非對稱型之磁滯現象。在控制架構方面,本文以前饋控制架構並配合PD型式之回饋控制器,實現高精度之定位控制。
英文摘要 The main purpose of this study is to perform the high precision positioning control task of a hysteresis system by means of an accurate hysteresis modeling. In the hysteresis modeling, a concept of switched system is adopted to describe the Preisach type hysteresis. The systematic modeling procedure is established to obtain the hysteresis system’s parameters step by step. Besides, the geometry of RIP is composed to explain the relationships between the input and the output of a hysteresis system. This is a good compensated procedure for hysteresis modeling. In this study, a piezo driven stage is used to verify the modeling accuracy. Comparing the simulation and the experimental results, it shows the proposed model in this study has a great ability of describing the asymmetric hysteresis phenomena. A control structure includes a feedforward controller and a PD type feedback controller used to realize the high precision positioning control.
論文目次 中文摘要………………………………………………………….….I
英文摘要……………………………………………………………II
目錄………………………………………………………………….III
圖目錄……………………………………………………………….VI
表目錄…………………………………………………………...….XI


第一章 緒論………………………………………………………...1
1-1研究動機與目的 ………………………………………..1
1-2 文獻回顧 ……………………………………………….1
1-2-1 有關壓電材料之研究 …………………………..2
1-2-2 有關壓電材料之應用 …………………………..4
1-2-3 有關壓電磁滯系統的研究 ……………………..5
1-3 論文架構 ……………………………………………….6


第二章 磁滯系統的介紹與分析…………………………………...7
2-1 磁滯對系統的影響 ……………………………………..7
2-2 對稱形式的磁滯模型 …………………………………..9
2-2-1 麥斯威爾模型(Maxwell model) …………………...9
2-2-2 布溫斯模型(Bouc-Wen model) ………….………..11
2-2-3 似齒隙之磁滯模型(Backlash-Like Hysteresis model) …12
2-2-4 簡化之戴伊模型(Simplified Dahl model) ……..…..13
2-3 非對稱型式的磁滯模型 ……………………………….13
2-3-1 Preisach模型 ……………………………………13
2-3-2 類神經網路模型 ……………………………….16
2-3-3 多項式近似模型 ……………………………….17


第三章 壓電驅動平台之非對稱磁滯模型……………………….21
3-1 非對稱磁滯模型之描述 ………………………………21
3-2 實驗設備 ………………………………………………26
3-3 壓電驅動平台非對稱磁滯模型之建模方式 …………27
3-3-1 建模實驗步驟 ………………………………….27
3-3-2 磁滯模型數值模擬與實驗結果討論 ………….28
3-3-3高頻輸入下之修正型非對稱磁滯模型 ………..30


第四章 具非對稱型磁滯系統控制………………………………48
4-1 導論 ……………………………………………………48
4-2 壓電驅動平台之控制器設計……………………………..50
4-2-1 前饋控制器 …………………………………….50
4-2-2 回饋控制器 …………………………………….51
4-3 實驗結與討論 …………………………………………52


第五章 結論與建議 …………..………………………………60
5-1 結論 ……………………………………………………60
5-2 未來研究方向與建議 …………………………………61
參考文獻 ……………………………………………………….63
自述 …………………………………………………………….66
參考文獻 [1].Adriaens, H. J. M. T. A., de Koning, W. L. & Banning, R.(1997). Design and Modeling of a Piezo-Actuated Positioning Mechanism. Proceedings of IEEE Conference on Decision and Control, pp.1978-1983.

[2].Wen, Y. K. (1976). Method of Random Vibration of Hysteretic Systems. Journal of Engeneering Mechanics, pp.249-263.

[3].Spencer, B.F. (1986). Reliability of Randomly Excited Hysteretic Structures. New York: Springer-Verlag.

[4].Adriaens, H. J. M. T. A., de Koning, W. L. & Banning, R.(2000).
Modeling Piezoelectric Actuators. IEEE/ASME on Mechatronics , 5(4),
331-341.

[5].Alud, A. (1973). Acoustic Field and Waves in Solids. New York: Wiley. vol.1 ,(pp. 265-280).

[6].Banning, R., de Koning, W. L. & Adriaens, H. J. M. T. A. (2001).
State-Space Analysis and Identification for a Class of Hysteretic Systems. Automatica 37, 1883-1892.

[7].Ben, R., & H. Hu. (2001). Dynamic Modeling of Hysteresis in Piezoceramics. IEEE/ASME International Conference Advanced Intelligent Mechatronics Proceedings , (pp. 510-515).

[8].Coleman, B. D., & Hoggdon, M. L. (1986). A constitute relation for
rate-independent hysteresis in ferromagnetically soft materials. International Journal of Engeneering Science, 24(6), 897-919.

[9].Croft, D., & Devasia, S. (1998). Hysteresis and Vibration Compensation for Piezoactuators. Journal of Guidance, Control and Dynamics, 710-717.

[10].Croft, D., Shedd, G., & Devasia, S. (2000). Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application. Proceedings of the American Control Conference, 2123-2128.

[11].Ge , P., & Jouaneh, M. (1995). Modeling Hysteresis in Piezoelectric Actuators. Precision Engineering, (pp. 211-221).

[12].Ge , P., & Jouaneh, M. (1996). Tracking Control of a Piezoelectric Actuator. IEEE Transactions on Control Systems Technology, vol.4, (pp. 209-216).

[13].Goldfarb, M., & Celanovic, N. (1997). Modeling Piezoelectric Stack Actuators for Control of Micromanipulation. IEEE Transactions on Control Systems Technology,17(3), 69-79.

[14].Hwang, C. L., Jan, C. & Chen, Y. H. (2001).Piezomechanics Using Intelligent Variable-Structure Control. IEEE Transactions on Industrial Electronics ,48(1), 47-59.

[15].Jordi, O., & Lucas, D. (2002). Hysteresis in Shape-Memory Alloys. International Journal of Non-Linear Mechanics, 1275-1281.

[16].Jyh-Da, Wei., & Chuen-Tsai, Sun. (2002). Simulation of Hysteresis Systems Using a Piecewise Polynomial Function. IEEE Signal Processing Letters, (pp. 207-210).

[17].Jyh-Da, Wei., & Chuen-Tsai, Sun. (2000). Constructing Hysteretic Memory in Neural Networks. IEEE Transactions on Systems, Man and Cybernetics, (pp. 601-609).

[18].Low,T. S., & Guo, W. (1995). Modeling of a Three-Layer Piezoelectric Bimorph Beam with Hysteresis. Journal of Microelectromechanical Systems, 4(4), 230-237.

[19].Mayergoyz, I. (1991). Mathematical Models of Hysteresis, New York: Springer-Verlag.

[20].Pan, J., & Su, C. Y. (2001). Chatter Suppression with Adaptive
Control in Turning Metal via Application of Piezoactuator. Proceedings of IEEE Conference on Decision and Control , 2436-2441.

[21].Sun, X., & Chang, T. (2001).Control of Hysteresis in a Monolithic
Nanoactuator. Proceedings of the American Control Conference,
pp.2261-2266.

[22].林挺勇,民90,補償靜摩擦潛變效應之快速精度極限定位,博士論文,國立成功大學航太工程研究所。

[23].陳俊生,民89,發展以史密斯預測器為基礎之強健性 控制器及其應用於壓電致動器磁滯補償之研究,碩士論文,國立中正大學機械工程研究所。

[24].魏志達,民91,遲滯現象之系統建模,博士論文,國立交通大學資訊科學研究所。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2003-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2003-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw