進階搜尋


 
系統識別號 U0026-0812200910404769
論文名稱(中文) 氧分壓、氧化鉍緩衝層及鎢摻雜 對射頻濺鍍法生長鉍釹鈦薄膜 鐵電性質之影響
論文名稱(英文) Effect of oxygen partial pressure, buffered Bi2O3 layers, and W doping on the ferroelectricity of (Bi,Nd)4Ti3O12 films grown by radio-frequency sputtered deposition.
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 91
學期 2
出版年 92
研究生(中文) 林夢嫺
研究生(英文) Meng-Shian Lin
學號 n5690117
學位類別 碩士
語文別 中文
論文頁數 121頁
口試委員 口試委員-李明逵
口試委員-方滄澤
指導教授-林文台
口試委員-方炎坤
口試委員-張鼎張
中文關鍵字 鐵電性  鉍釹鈦薄膜 
英文關鍵字 BNT film  ferroelectricity 
學科別分類
中文摘要 本實驗以射頻濺鍍法生長鉍釹鈦(Bi,Nd)4Ti3O12 (BNT)薄膜,探討O2/Ar流量比、氧化鉍緩衝層、鎢摻雜及佈植磷(P+)和硼(BF2+)離子對其鐵電性質及微結構的影響。當O2/Ar流量比在1:9~1:1.5之間,殘餘極化量隨著O2/Ar流量比增加而增加,直至O2/Ar流量1.5:1以上,由於晶粒尺寸變小則2Pr有隨之遞減的趨勢。對於摻雜鎢的BNT(BNTWx)薄膜而言,隨著W含量增加至x=0.005-0.1其2Pr有稍微增加,而超過x=0.03則2Pr明顯下降。這代表摻雜鎢將對BNT薄膜的2Pr值造成兩種相反的效應(1)減少氧缺陷的數量(2)晶粒尺寸變小。有Bi2O3緩衝層的BNT薄膜,會由於Bi2O3模板效應和(001)BNT/Pt低界面能因素而促進c軸優選方向生長,造成小的2Pr。佈植P+和 BF2+的BNT薄膜在佈植劑量1x1015~5x1015/cm2範圍內,由於晶粒變小其2Pr普遍下降。然而,佈植BF2+離子劑量為1x1015/cm2的BNT薄膜,其2Pr有稍微增加,可能是晶界或晶域壁(domain wall)中的缺陷被摻雜物BF2+離子消除,緩和了由電荷捕獲(charge trapping)所造成的釘札(pinning)效應。
英文摘要 Effect of O2/Ar ratio, buffered Bi2O3 layers, W doping, and P+ and BF2+ implantation on the ferroelectricity and microstructures of radio-frequency sputtered (Bi,Nd)4Ti3O12 (BNT) films were studied. The remanent polarization (2Pr) increased with the O2/Ar ratio in the range of 1:9-1:1.5 and then decreased with the ratio larger than 1.5:1 because of the reduction of grain size. For W-doped BNT (BNTWx) films the 2Pr slightly increased with the W concentration in the range of x=0.005-0.01, and then remarkably decreased with the W concentration larger than x=0.03. W doping induces two contrary effects on 2Pr, i.e., reducing the amount of oxygen vacancies and decreasing the grain size. The buffered Bi2O3 layers enhanced the c-axis-oriented growth of BNT films due to the template effect and the lower interfacial energy of (001)BNT/Pt, resulting in the smaller 2Pr. For the P+- and BF2+- implanted BNT films the 2Pr generally decreased with the doses in the range of 1x1015-5x1015 /cm2 due to the reduction of the grain size. However, for the BF2+-implanted BNT films the 2Pr slightly increased at the does of 1x1015/cm2. It is suggested that the defects present in the grain boundaries or the domain walls can be annihilated by the BF2+ dopants alleviating the effect of domain walls pinning due to charge trapping.
論文目次 本 文 目 錄

中文摘要……………………………………………………………Ⅰ
英文摘要……………………………………………………………Ⅱ
誌謝感言……………………………………………………………Ⅲ
本文目錄……………………………………………………………Ⅳ
表目錄………………………………………………………………Ⅵ
圖目錄………………………………………………………………Ⅵ

本 文
第一章 簡介……………………………………………………………………1
1. 前言……………………………………………………………………………1
1-1. 電子記憶體……………………………………………………………………1
1-2. 鐵電材料………………………………………………………………………3
1-3. 鐵電材料之基本結構…………………………………………………………5
2. 基本理論………………………………………………………………………...…7
2-1. 極化原理………………………………………………………………………7
2-2. 脈衝極化(pulse polarization)及疲勞(fatigue)量測原理…………………10
2-3. 鐵電記憶體…………………………………………………………………..11
3. 儀器操作原理………………………………………………….…………………12
3-1. 射頻(RF)濺鍍法(Radio-frequency sputtering)…………………………12
3-2. 電子槍蒸鍍系統……………………………………………………..………13
3-3. RT66A電滯曲線量測原理………………………………………….……..14
4. 研究理論基礎與動機……………………………………………………………15
4-1. PZT鐵電薄膜………………………………………………………………...16
4-2. SBT鐵電薄膜………………………………………………………….……17
4-3. BTO與BLT鐵電薄膜………………………………………………………18
4-4. BNT鐵電薄膜………………………………………………………………20
4-5. 以高價陽離子摻雜之鐵電薄膜……………………………………………..20
4-6. 有Bi2O3緩衝層對鐵電薄膜的影響………………………………………22
4-7. 磷和硼對鐵電薄膜的影響……………………………………………23
4-8. 本實驗研究動機—BNT鐵電薄膜………………………………………..24
第二章 實驗步驟與方法…………………………………………………………25
1. 實驗流程圖……………………………………….………………………………25
2. 粉末配置與靶材燒結……………………………………………….……………26
3. 基板(底電極)Pt/Ta/SiO2/Si製備—電子槍蒸鍍系統…………….……………26
4. BNT鐵電薄膜製備—射頻濺鍍系統…………………………………………….27
4-1. 離子佈植(ion implantation)………………………………………………27
4-2. 製備Bi2O3緩衝層…………………………………………………….……..28
5. 上電極製作—電子槍蒸鍍系統………………………………………….………29
6. 退火—管形爐…………………………………………………………….………29
7. 鐵電性質量測與分析………………………………………………….…………29
7-1. 結晶相鑑定—XRD……………………………………………….…………29
7-2. 成分分析—RBS…………………………………………………….…….…30
7-3. 薄膜厚度測定—α-step…………………………………………….………..31
7-4. 電滯曲線(P-E curve)及疲勞(fatigue)曲線量測—RT66A ……….……32
7-5. SEM及TEM觀察…………………………………………………….…..…32
第三章 結果與討論………………………………………………………………33
1、以不同氧流量鍍製BNT薄膜……………………………………………..……33
2、摻雜鎢(W)對BNT薄膜鐵電性質之影響……………………………….……35
3、Bi2O3緩衝層對BNT薄膜的影響………………………………………….……39
4、離子佈植硼或磷對BNT薄膜鐵電性質之影響………………………..….……44
5、不同Nd含量之BNT薄膜鐵電性質之影響…………………………………..…46
5-1. RBS成分分析………………………………………………………………...46
5-2. 分析BNT薄膜鐵電性質……………………………………………………47
5-3. 摻雜釩(V)對BNT薄膜鐵電性質之影響…………………………….…50
第四章 結論………………………………………………………………………..51
參考文獻……………………………………………………………………………..53
參考文獻 1. 毫微米通訊, 鐵電記憶體簡介, 第五卷第四期33.鐵電記憶體簡介.
2. 林諭男, 鐵電薄膜電容特性與機制, 材料學會 專論.
3. R. A. Roy, K. F. Etzold, and J. J. Cuomo, Mat. Res. Soc. Symp. Proc. 200, 141 (1990)
4. 工業材料, 107期, 84年11月.
5. S. K. Dey, and R Znleeg, Ferroelectric, 108, 37 (1990)
6. K. Ramkumar, J. Lee, A. Safari, S. C. Danforth, Mat. Res. Soc. Symp. Proc. 200, 121 (1990)
7. M. H. Francombt, and S. Krishnaswany, J. Vac. Sci. Technol. A8, 1382 (1990)
8. R. Ramesh, A. Inam, W. K. Chan, B. Wilkens, K. Myers, K. Remschnig, P. L. Hart, J. M. Taroscon, Science, Vol.251, 17 May (1991)
9. B. Aurivillins. Ariki. Kemi. 1, 463, 499 (1949); Ibid. 2, 519 (1950)
10. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted bismuth titanate for use in non-volatile memories.” Nature 401, 682 (1999)
11. M. S. Jahn, D. W. Cooke, H. Sheinbery, J. L. Smitch, and D. P. Lianos, J. Mater, Res. 4, 759 (1989)
12. Y. Tokura, H. Takagi, and S. Vchida, Nature, 337, 345 (1989)
13. J. F. Scott and C. A. Paz de Araujo, Science 246, 1400 (1989)
14. 莊達仁 編著, VLSI製造技術, 高立圖書, 中華民國88年.
15. 金屬工業34卷2期 中華民國89年3月, 45.
16. J. F. Scott, “Ferroelectric memories a atatus report” present at Government Industry Review of Ferroelectric memories Sept 14-15, (1998)
17. D. Bondarant, and Fred Gnadinger “Ferroelectric, 1988 for nonvolatile Rams” IEEE Spectrum, V. 26. pp. 30-33, July (1989)
18. R. Ramesh, A. Inam, B. Wilkens, W. K. Chan, D. L. Hart, K. Luther and J. M. Yarascon, Science, 252 (1991), 944
19. R. Remesh, J. Lee, T. Sands, and V. G. Keramidas, “Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O heterostructures on [001] Pt/SiO2/Si substrates using a bismuth titanate template layer.” Appl. Phys. Lett. 64 (19), (1994), 2511
20. Arit, G. & Pertser, N. A. J. Appl. Phys. 70, 2283-2289 (1991)
21. Artit, G. & Robels, U. Integ. Ferroelect. 3, 247-254 (1993)
22. I. S. Zheluder, Physics of crystalline ielectrics (Plenum, New York, 1971)
23. Plessner, K. W. Proc. Phys., Soc. B69, 1261-1269 (1956)
24. Scott. J. F. and Araujo, C. A. Science, 246, 1400-1405 (1989).
25. Duiker, H. H. Etal. J. Appl. Phys. 68, 5783-5789 (1990)
26. Postnikov, V. S. Pavlov, V. S. Gvidnev, S. A. &Turkor, S. K. Sov. Phys. Solid. St.10, 1267-1270 (1968)
27. Lohkamper, R. Neumann, H. & Arit G. J. Appl. Phys. 68, 4220-4227(1990)
28. I. K. Yoo, and S. B. Desu, Phys. Sol. (a)133. 565 (1992)
29. Takashi Kojima, Tomohiro Sakai, Takayuki Watanabe, Hiroshi Funakubo, Keisuke Saito, and Minoru Osada, “Large remanent polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition.”Appl. Phys. Lett. 80, 2746-2748 (2002)
30. Takayuki Watanabe, Takashi Kojima, Tomohiro Sakai, and Hiroshi Funakubo, “Large remanent polarization of Bi4Ti3O12-based thin films modified by the site engineering technique.” J. Appl. Phys. 92, 1518-1521 (2002)
31. Hiroshi Uchida, Hiroki Yoshikawa, and Isao Okada, “Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd3+/V5+ cosubstitution.” Appl. Phys. Lett. 81, 2229-2231 (2002)
32. R. E. Melgarejo and M. S. Tomar, “Large ferroelectric response in Bi4-xNdxTi3O12 films prepared by sol–gel process.” Appl. Phys. Lett. 81, 2611-2613 (2002)
33. Takayuki Watanabe and Hiroshi Funakubo, “Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching.” Appl. Phys. Lett. 81,1660-1662 (2002)
34. Hiroshi Uchida, Hiroki Yoshikawa, Isao Okada, Hirofumi Matsuda, Takashi Iijima, Takayuki Watanabe, and Hiroshi Funakubo, “Fabrication of M3+-Substituted and M3+/V5+-Cosubstituted Bismuth Titanate Thin Films [M=lanthanoid] by Chemical Solution Deposition Technique.” Jpn. J. Appl. Phys. Part 1, No.11B, 41, 6820-6824 (2002)
35. Takashi Kojima, Takayuki Watanabe, and Hiroshi Funakubo, “Ferroelectric properties of lanthanide-substituted Bi4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition.” J. Appl. Phys. 93, 1707-1712 (2003)
36. H. Funakubo, T. Watanabe, T. Kojima, T. Sakai, Y. Noguchi, M. Miyayama, M. Osada, M. Kakihana, K. Saito, “Property design of Bi4Ti3O12-based thin films using a site-engineered concept.” J. Crystal Growth, 248, 180-185 (2003)
37. Takashi Hayashi, Haoya Iizawa, Daichi Togawa, Mio Yamada, Wataru sakamoto and shin-ichi-Hirano, “Chemical solution processing and properties of (Bi,Nd)4Ti3O12 ferroelectric thin film.” Jpn. J. Appl. Phys.42, 1660-1664 (2003)
38. Hiroshi Maiwa, Naoya Iizawa, Daichi Togawa, and Takashi Hayashi, “Electromechanical properties of Nd-doped Bi4Ti3O12 films:A candidate for lead-free thin-film piezoelectrics.” Appl. Phys. Lett. 82, 1760-1762 (2003)
39. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides.” Acta Cryst. A32, 751-767 (1976)
40. Yuji Noguchi, Ichiro Miwa, Yu Goshima and Masaru Miyayama, “Defect control for large remanent polarization in bismuth titanate ferroelectrics -Doping effect of higher valent cations-.” Jpn. J. Appl. Phys. 39, L1259-L1262 (2000)
41. Yuji Noguchi, Masaru Miyayama, “Large remanent polarization of vanadium-doped Bi4Ti3O12.” Appl. Phys. Lett. 78, 1903-1905 (2001)
42. Takayuki Watanabe and Hiroshi Funakubo, Minotu Osada, Yuji Noguchi and Masatu Miyayama, “Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition.” Appl. Phys. Lett 80, 100-102 (2002)
43. Wen-Tai Lin, Ta-Wei Chiu, Hsiao-Hsuan Yu, Jian-Long Lin, and Meng-Shian Lin, “Effects of W doping and annealing parameters on the ferroelectricity and fatigue properties of sputtered Bi3.25La0.75Ti3O12 films.” J. Vac.Sci. Technol. A, 21, 787-791 (2003)
44. Hiroshi Uchida, Hiroki Yoshikawa, Isao Okada, Hirofumi Matsuda, Takashi Iijima, Takayuki Watanabe, and Hiroshi Funakubo, “Fabrication of M3+-Substituted and M3+/V5+-Cosubstituted Bismuth Titanate Thin Films [M=lanthanoid] by Chemical Solution Deposition Technique.” Jpn. .J. Appl. Phys. Part 1, No.11B, 41, 6820-6824 (2002)
45. Chung-Hsin Lu and Cheng-Yen Wen, “Phase formation and ferroelectric characteristics of nonfatigue barium bismuth tantalate thin films.” J. Appl. Phys. 86, 6335-6341 (1999)
46. Koji Aizawa, Eisuke Tokumitsu, Kojiro Okamoto and Hiroshi Ishiwara, “ Impact of face-to-face annealing in preparation of sol-gel-derived SrBi2Ta2O9 thin films.” Appl. Phys. Lett. 76, 2609-2611 (2000)
47. Di Wu, Aidong Li, Tao Zhu, Zhiguo Liu and Naiben Ming, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition.” J. Appl. Phys. 88, 5941-5945 (2000)
48. Dinghua Bao, Naoki Wakiya, Kazuo Shinozaki and Nobuyasu Mizutani, “Ferroelectric properties of sandwich structured (Bi, La)4T3O12/Pb(Zr, Ti)O3/ (Bi, La)4Ti3O12 thin films on Pt/Ti/SiO2/Si substrates.” J. Phys. D. 35, L1-L5 (2002)
49. Ho Nyung Lee, Dietrich Hesse, Nikolai Zakharov, Ulrich Gösele, ” Ferroelectric Bi3.25La0.75Ti3O12 Films of Uniform a-Axis Orientation on Silicon Substrates.” Science 296, 2006-2009 (2002)
50. S. M. Zaneti, J. R. Duclere, M. Guilloux-Viry, V. Bouquet, E. R. Leite, E. Longo, J. A. Varela, A. Perrin, “Ferroelectric SBN thin films growns by an SBN/Bi2O3 PLD sequential process.” J. Eur. Ceram. Soc. 21, 2199-2205 (2001)
51. Yoon-Baek Park, Se-Myeong Jang, Jeon-Kook Lee, and Jong-Wan Park, “Influence of second phases on the ferroelectric properties of SrBi2TaNbO9 thin films fabricated by radio-frequency magnetron sputtering.” J. Vac. Sci. Technol. A 18,17-22 (2000)
52. R. Dinu, M. Dinescu, J. D. Pedarning, R. A. Gunasekaran, D. Bauerle, S. Bauer-Gogonea, S.Bauer, “Film structure and ferroelectri properties of in suit grown SrBi2Ta2O9 films.” Appl. Phys. A 69, 55-61 (1999)
53. Woong-Chul Shin and Soon-Gil Yoon, “Improvement in ferroelectric properties of SrBi2Ta2O9 thin films with Bi2O3 buffer layers by liquid-delivery metalorganic chemical-vapor deposition.” Appl. Phys. Lett. 79, 1519-1521 (2001)
54. Dinghua Bao, Te-Wei Chiu, Naoki Wakiya, Kazuo Shinozaki, and Nobuyasu Mizutani, “Structural and electrical characteristics of chemical-solution-derived (Bi,La)4Ti3O12 thin films with various Bi2O3 template layers.” J. Appl. Phys. 93, 497-503 (2003)
55. Sang-Hyun Oh, Suk-Kyoung Hong, Jin Gu Kim, Jin Yong Seong, Young-Jin Park, and Deok-Won Leeb, “Degradation of ferroelectric properties in integrated Pt/SrBi2Ta2O9/Pt capacitor by impurity diffusion from interlevel dielectric layer.“ Appl. Phys. Lett. 81, 4230-4232 (2002)
56. D. Dimos, H. N. Al-Shareef, W. L. Warren, and B. A. Tuttle, “Photoinduced changes in the fatigue behavior of SrBi2Ta2O9 and Pb(Zr,Ti)O3 thin films.” J.Appl.Phys. 80, 1682-1687 (1996)
57. Jin Soo Kim, Sang Su Kim, Jong Kuk Kim and Tae Kwon Song, “Ferroelectric properties of tungsten-substituted Bi4Ti3O12 thin film prepared by sol-gel method.” Jpn. J. Appl. Phys. .41, 6451-6454 (2001)
58. D. Wu, A. Li, H. Ling, T. Yu, Z. Liu, and N. Ming, “Room temperature aging behavior of thermally imprinted Pt/SrBi2Ta2O9/Pt ferroelectric thin film capacitors.” J. Appl. Phys. 90, 4130-4133 (2001)
59. Robert E. Reed-Hill, Reza Abbaschian, “Physical Metallurgy Principles.”(PWS Publishing Company, 1994) Chap.15
60. Xiaofeng Du and I-Wei Chen, “Ferroelectric Thin Films of Bismuth-Containing Layered Perovskites:Part I, Bi4Ti3O12.” J. Am. Ceram. Soc. 81, 3253 (1998)
61. R. Dinu, M. Dinescu, J. D. Pedarning, R. A. Gunasekaran, D. Bauerle, S. Bauer-Gogonea, S.Bauer, “Film structure and ferroelectri properties of in suit grown SrBi2Ta2O9 films.” Appl. Phys. A 69, 55-61 (1999)
62. Woong-Chul Shin and Soon-Gil Yoon, “Improvement in ferroelectric properties of SrBi2Ta2O9 thin films with Bi2O3 buffer layers by liquid-delivery metalorganic chemical-vapor deposition.” Appl. Phys. Lett. 79, 1519-1521 (2001)
63. R. C. Buchanan, R.Palan, A. Ghaffari, K. Tran, J. E. Sundeen, “Orientation effects on polarization and pyroelectric properties of ferroelectric thin films on Si.” J. Eur. Ceram. Soc. 21, 1577-1580 (2001)
64. 林建龍, 鉍含量、氧化鉍緩衝層及鉭摻雜對化學溶液鍍著法生長鉍鑭鈦膜鐵電性質之影響. 國立成功大學材料科學與工程研究所碩士論文. 中華民國九十二年六月.
65. S. E. Cummins and L.E. Cross, “Electrical and Optical Properties of Ferroelectric Bi4Ti3O12 single Crystals.” J. Appl. Phys. 39, 2269-2274 (1968)
66. Y. Shimakawa and Y. Kubo, Y. Tauchi and H. Asano, T. Kamiyama, F. Izumi, Z. Hiroi, “Crystal and electronic structures of Bi4- xLaxTi3O12 ferroelectric materials.” Appl. Phys. Lett. 79, 2791-2793 (2001)
67. Yu-Ming Sun, Yi-Chan Chen, Jon-Yiew Gan, and Jenn-Chang Hwang, “ Ferroelectric properties of (117)- and (001)-oriented Bi3.25La0.75Ti3O12 polycrystalline thin films.” Appl. Phys. Lett. 81, 3221-3223 (2002)
68. Ho Nyung Lee and Dietrich Hesse, “ Anisotropic ferroelectric properties of epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different orientations.” Appl. Phys. Lett. 80, 1040-1042 (2002)
69. Mohammad M, Mandurah, Krishna C, Saraswat, and C. Robert Helms, “Dopant segregation in polycrystalline silicon.” J. Appl. Phys. 51, 5755-5763 (1980)
70. Di Wu, Aidong Li, and Tao Zhu, “Processing- and composition-dependent characteristics of chemical solution deposited Bi4-xLaxTi3O12 thin films.” J. Mater. Res. 16, 1325-1332 (2001)
71. Di Wu, Aidong Li and Tao Zhu, Zhiguo Liu and Naiben Ming, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition.” J. Appl. Phys. 88, 5941-5945 (2000)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2004-07-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2004-07-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw