進階搜尋


 
系統識別號 U0026-0812200910354956
論文名稱(中文) 應用遺傳演算法與決策樹於化妝品行銷研究
論文名稱(英文) none
校院名稱 成功大學
系所名稱(中) 工業管理科學系
系所名稱(英) Department of Industrial Management Science
學年度 91
學期 2
出版年 92
研究生(中文) 陳秉誼
研究生(英文) Ping-Yi Chen
學號 R3690116
學位類別 碩士
語文別 中文
論文頁數 82頁
口試委員 指導教授-葉榮懋
口試委員-耿伯文
口試委員-林清河
口試委員-吳植森
中文關鍵字 行銷  決策樹  遺傳演算法  區隔 
英文關鍵字 segmentation  marketing  decision tree  genetic algorithm 
學科別分類
中文摘要 今日的行銷已經逐日變成一種資訊擁有的戰爭,企業的資訊內容或許可成為其主要的競爭優勢。如何運用市場的情報或公司資料庫,發展成有用的資訊型態來提供給公司做決策制定之參考,其重要性無庸置疑。

過去對於化妝品的行銷研究通常以固定區隔基礎的方式以探討特定主題的研究;本研究有別於傳統以統計方法的分析方式,而利用決策樹能產生外顯規則的優點,然後以彈性選擇分類變數以及相關的預測變數之方式,研究化妝品市場的消費者特性。

利用C4.5軟體所建立的決策樹一般會使用較多的屬性,且所得到的決策樹可能會變得過於龐大而難以理解;因此針對這樣的問題,於是本研究提出以遺傳演算法結合C4.5的方法,以達成精簡決策樹的目的。經過本研究的驗證,證明了本研究方法的可行性。另外,為了達成行銷決策支援的目的,本研究使用C語言建構完成一個人機互動介面,此介面可提供領域專家從資料檔案裡,根據決策者需要然後去挑選分類變數以及相關的屬性。

在化妝品的實例研究部份,分別根據廣告、推薦促銷、通路、產品概念及定位、一般消費者瞭解等的研究目的,透過人機互動介面,從問卷資料檔案裡分別選取八個不同的分類變數以及依據該分類變數選取相關屬性,而探勘出規則,然後藉由解釋這些所發現的規則,本研究提出五個方面的行銷策略之建議,包括廣告訴求、推薦促銷產品給消費者、發展健康訴求的化妝品、品牌知名度、市場通路等,提供給化妝品業者作參考。
英文摘要 Today, marketing has become an information-orientated campaign. How to
make good use of market information or data in database for decision support is
important in marketing research.
In the past, it was usually discussed that a certain subject with fixed
segmentation-based about cosmetic marketing research. Our method is differ from
traditional statistic manner, we use the decision tree that can generate manifest
rules to study the consumer’s characters in cosmetic with a manner of choosing
class variable and relevant attributes.
The decision trees obtained may use more attributes, and the decision trees
may become very large, therefore they are no longer comprehensible. To solve
this problem, we have proposed a method that can get simplified knowledge by
combining GA with C4.5. Based on our test and verify, we have proof the method
we proposed is workable.
With the purpose of decision support, we have constructed the interface that
has the function of choosing class variable and relevant attributes elastically from
a data file by expert to link up with our method to extract knowledge. Finally,
applying the interface and our method to a study of cosmetic marketing.
Based on the different marketing purposes, for example, knowing consumers,
advertisement, promotion, place, position and new product concept, we choose
eight different-class variables to get simplified rules from the questionnaire data
file, and based on this rules we find, we present suggestions of appeal of
commercial, to recommend consumer for purchasing product, to develop the
cosmetic of healthy-appeal, the well-know of brand, and market place, to
marketer for reference.
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究範圍與限制 3
1.4 研究流程 3
第二章 文獻探討 5
2.1 行銷管理與區隔 5
2.2 國內化妝品市場的相關研究 12
2.3 決策樹(DECISION TREE) 14
2.4 使用決策樹於行銷研究 18
第三章 研究方法 20
3.1 問題描述 20
3.2 研究方法與架構 22
3.3 C4.5決策樹 28
3.4 遺傳演算法的運作方式 32
第四章 方法驗證 36
4.1 驗證目的 36
4.2 驗證資料來源 37
4.3 資料驗證結果比較 41
第五章 化妝品實例分析 50
5.1 研究對象 50
5.2 問卷設計與發放 50
5.3 實例研究的目的 50
5.4 結果分析 52
第六章 結論與建議 71
第一節 結論 71
第二節 未來研究方向 74
參考文獻 76
參考文獻 中文部分
方鏘傑 (1994),「台北市女性消費者生活態度對不同廣告訴求方式、產品特性、廣告態度之研究-以保養化妝品為例」,國立交通大學管理科學研究所碩士論文。

宮瑞雲 (1991),「女性化妝品消費者購買動機之研究-以台北市女性市民為例」,國立交通大學管理科學研究所碩士論文。

陳守仁 (1997),「百貨公司保養品購買動機類型與購買型態關係之研究」,國立中興大學企業管理研究所碩士論文。

黃士銘 (1989),「少女生活型態與化妝品消費者行為之研究」,國立政治大學企業管理研究所碩士論文。

張嘉文 (2001),「化妝品不同通路型態之消費者特性研究」,私立淡江大學管理科學研究所碩士論文。

葉明莉 (1993),「女性購買力指標消費行為之研究」,淡江大學管理科學研究所碩士論文。

戴雁如 (1999),「女用保養品消費者購買行為之研究-以台北市大學日間部女學生為例」,國立交通大學經營管理研究所碩士論文。


英文部分
Bandar, Z., O’Shea, J. D., and McLean, D. (1999). An optimized decision tree induction algorithm for real world data domains. IEEE International Conference on Neural Information Processing, vol. 2, pp. 441-446.

Bock, T. and Uncles, M. (2002). A taxonomy of differences between consumers for market segmentation. International Journal of Research in Marketing, vol. 19, pp. 215-224.

Cestnik, B., Lavrac, N., Zelezny, F., Gamberger, D., Todorovski, L. and Kline, M. (2002). Data mining for decision support in marketing: A case study in targeting a marketing campaign. In: IDDM-2002 Workshop at ECML'02, Helsinki, Finland.

Chaturvedi, A. and Green, P. E. (1995). Software Review:SPSS for Windows , CHAID 6.0. Journal of Marketing Research, vol. 32, pp. 245-254.

Endou, T. and Zhao, Q. (2002). Generation of comprehensible decision trees through evolution of training data. Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1221-1225.

Engel, J. F., Blackwell, R. D. and Kollat, D. T. (1982). Consumer Behavior, 4th ed., pp174-175.

Frank, R. E., Massy, W. F. and Wind, Y. (1972). Market Segmentation. Englewood Cliff: Prentice-Hall international ed., pp. 25-29.

Ishino, Y., Hori, K. and Nakasuka, S. (1999). Strategic concept formation of consumer goods based on knowledge acquisition from questionnaire data. IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 1043-1048. 

Jonker, J. J. and Piersma, N. (2002). Joint optimization of customer segmentation and marketing policy to maximize long-term profitability. Econometric Institute Report EI.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, vol. 29, pp. 119-127.

Kim, H. and Koehler, G. (1995). Theory and practice of decision tree induction. Omega vol. 23, pp. 637-652.

Kitayama, M., Matsubara, R. and Izui, Y. (2002). Application of data mining to customer profile analysis in the power electric industry. IEEE Power Engineering Society Winter Meeting, vol. 1, pp. 632-634.

Kotler, P. (1991). Marketing Management : Analysis, Planning, Implementation, and Control, 7th ed., Prentice-Hall Inc.

Lazer, W. (1963). Life style concepts and marketing. Toward Scientific Marketing, pp. 140-151.

Morgan, J. N. and Sonquist, J. A. (1963). Problems in the analysis of survey data and a proposal. Journal of the American Statistical Association, vol. 58, pp. 415-434.

Niimi, A. and Tazaki, E. (1999). Object oriented approach to combined learning of decision tree and ADF GP. IEEE International Joint Conference on Neural Networks, vol. 6, pp. 4166-4170.

Pasichnyk, R., Maslyyak, B. and Vitsentiy, V. (2001). Modeling of products sale velocity and products recommended structure on the basis of a data reduction method. IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 238-241.

Perner, P. and Apte, C. (2000). Empirical evaluation of feature subset selection based on a real-world data set. Lecture Notes in Computer Science, vol. 1910, pp. 575-580.

Pijls, W., Potharst, R. and Kaymak, U. (2001). Pattern-based target selection applied to fund raising. Erasmus Research Institute of Management, vol. 113, pp. 15-24.

Plummer, J. T. (1974). The concept and application of life style segmentation. Journal of Marketing, vol. 38, pp. 33-37.

Quinlan, J. R. (1996). Improved use of continuous attributes in C4.5. Journal of Artificial Intelligence Research, vol. 4, pp. 77-90.

Quinlan, J. R. (1993). C4.5: Programs for machine learning, Morgan Laufman.

Quinlan, J. R. (1986). Induction of decision tree. Machine Learning, vol. 1, pp. 81-106.

Ruggieri, S. (2002). Efficient C4.5. IEEE Transactions on Knowledge and Data Engineering, vol. 14, pp. 438-444.

Terano, T. and Ishino, Y. (1996). Knowledge acquisition from questionnaire data using simulated breeding and inductive learning methods. Expert Systems With Applications, vol. 11, pp. 507-518.

Vriens, M. (2001). Market segmentation analytical developments and application guidelines. Technical Overview Series.

Wedel, M. and Kamakura, W. A. (1998). Market Segmentation: Conceptual and Methodological Foundations. International series in quantitative marketing, Kluwer Academic Publishers, Dodrecht, the Netherlands.

Weinstein, A. (1994). Marketing Segmentation. New York, Irwin Professional Publishing.

White, P. and Liu, W. Z. (1994). Bias in the information-based measure in decision tree induction. Machine Learning, vol. 15, pp. 321-329.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2004-06-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2004-06-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw