進階搜尋


 
系統識別號 U0026-0812200910243935
論文名稱(中文) 混凝對表面水濁度去除之研究
論文名稱(英文) The performance of coagulation process for high turbidity suface water
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 90
學期 2
出版年 91
研究生(中文) 陳俞蓁
研究生(英文) Yu-Chen Chen
學號 p5689123
學位類別 碩士
語文別 中文
論文頁數 108頁
口試委員 口試委員-林財富
口試委員-黃文鑑
口試委員-鄭幸雄
指導教授-葉宣顯
中文關鍵字 濁度  混凝  高分子凝聚劑  顆粒粒徑 
英文關鍵字 turbidity  coagulation  polymer  particle diameter 
學科別分類
中文摘要 本研究係探討混凝對表面水濁度之去除,藉由添加高分子凝聚劑,探討高濁度人工原水之處理成效。高濁度人工原水乃取南化淨水場調勻池內之底泥加入實驗室自來水中配製而成。進行瓶杯試驗,藉由改變混凝劑種 (多元氯化鋁 (PAC)、硫酸鋁及氯化鐵) 及加量,以探討濁度去除程度及所產生污泥之體積,同時分析混凝沉澱後上澄液內顆粒粒徑分佈及殘餘鋁量。此後,藉濁度去除之最佳混凝劑PAC,並在其最佳加藥量情況下,加入不同高分子凝聚劑種 (C-24、C-55、A-100、A-300) 為助凝劑時,探討其對濁度去除之影響。
研究結果顯示,不論何種混凝劑當過低劑量時,對濁度之去除幾乎不能發揮任何作用;而當人工原水濁度增加時,混凝劑之最佳加藥量有隨之增加之趨勢。在濁度去除方面混凝劑以PAC效果最佳,顯示其為最佳混凝劑,然而加藥量過多時,易造成污泥體積遽增。此外,以硫酸鋁為混凝劑時,較易消耗鹼度,故其加藥量控制不佳時,易造成溶解性鋁濃度過高。以多元氯化鋁為混凝劑,在最佳加藥量 (10 mg/L as Al) 下並添加高分子凝聚劑作為助凝劑,結果顯示高分子凝聚劑對於濁度去除以中強陽離子型 (C-24) 之效果為較佳。另以PAC為混凝劑,其混凝沉澱後之上澄液溶解性鋁較多,然於最佳加藥量時,顆粒性鋁明顯降低。混凝沉澱後之上澄液總顆粒數量與濁度並非有一定關係。就整體而言,濁度去除效果較好時,其液相中顆粒總數量較少,且添加混凝劑之上澄液,其顆粒平均體積粒徑均有增加之趨勢。

英文摘要 This study elucidated the effect of polymer addition on the performance of coagulation process for high turbidity surface water. Jar tests were conducted with artificial high turbidity water prepared by adding into tap water the bottom mud from equalization tank in the Nan Hua Water Treatment Plant. Three chemicals, namely polyaluminum chloride (PAC)、aluminum sulfate (alum) and ferric chloride, were used as primary coagulants in this study. Various coagulant dosages were tasted in order to optimize the processes, which including lower supernatant turbidity and lower sludge volume. The particle size distribution and residual aluminum of the supernatant were also measured. Under the optimum condition of the primary coagulant, various polymers, namely C-24, C-55, A-100 and A-300, were tested as coagulation-aid.
The results show that there was no turbidity removal unless the coagulant dosage was higher than certain value. And the optimal coagulant dosage was proportional to the initial turbidity of the artificial raw waters. As far as turbidity removal is concerned, PAC performed best. However, the sludge volume increased drastically with increasing PAC dosage. When alum was need, the alkalinity reduction was more significant;and excessive residual aluminum may resulted when dosage control was not adequate. Under the optimum dosage of PAC (10 mg/L as Al), the polymer C-24 performed best, compared to other kinds of polymers. Furthermore, when PAC was need as primary coagulant, the dissolved aluminum concentration of supernatant was higher than that of other coagulants. However, under optimum dosage of PAC, particulate aluminum concentration of the supernatant decreased significantly.
For the supernatant after coagulation, there is no clear relationship between total particle count and turbidity. Generally speaking, those with better turbidity removal also have lower total particle count and larger average volume diameter for the residual particles in the supernatant.

論文目次 目 錄
誌謝 I
摘要 III
Abstract Ⅴ
目錄 Ⅶ
表目錄 Ⅸ
圖目錄 Ⅹ
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 5
2-1 混凝與膠凝之理論 5
2-1-1 顆粒之去穩定 5
2-1-2 混凝 6
2-1-3 膠凝 13
2-2 混凝劑與助凝劑之特性 17
2-2-1 多元氯化鋁、硫酸鋁、氯化鐵 18
2-2-2 高分子聚合物 27
2-3 混凝程序對濁度去除之影響 31
2-3-1 混凝劑種 31
2-3-2 加藥順序之影響 32
2-3-3 其他參數 32
2-4 顆粒粒徑 32
第三章 實驗程序、材料及分析方法 35
3-1 人工原水之配製 35
3-2 實驗流程規劃 35
3-3 水質參數之分析 39
3-3-1 濁度 39
3-3-2 氫離子濃度測定計 39
3-3-3 界達電位 39
3-3-4 鹼度 41
3-3-5 導電度 42
3-3-6 非揮發性溶解性有機碳 42
3-4 顆粒性鋁與溶解性鋁 43
3-5 顆粒粒徑 45
第四章 結果與討論 49
4-1 南化淨水場之原水基本水質現況 49
4-2 不同人工配製原水時混凝去除濁度之影響 51
4-3 不同參數對最佳混凝加藥量之影響 58
4-3-1 混凝劑及不同初始濁度 58
4-3-2 過濾後之殘留濁度變化 66
4-3-3 助凝劑 69
4-4 混凝沉澱後上澄液中殘留鋁量與污 泥沉降性之性質 76
4-4-1 殘留鋁 76
4-4-2 污泥之沉降性 84
第五章 結論與建議 97
5-1 結論 97
5-2 建議 98
參考文獻 99
附錄A 107


表2-1 混凝機制及影響作用之因素 8
表2-2 世界各國飲用水鋁含量之規定 27
表2-3 一般常用之高分子有機凝聚劑 29
表3-1 試驗中所使用之高分子凝聚劑 39
表4-1 採樣期間之水質參數分析 51
表4-2 未加底泥時其不同人工原水之背景水質項目 52


圖 目 錄


圖2-1 懸浮液中帶負電之固體顆粒之Zeta 電位 7
圖2-2 四種混凝機制 10
圖2-3 膠體藉吸附電價中和及沉澱掃曳之示意圖 12
圖2-4 硫酸鋁於不同加藥量及pH值下進行混凝時,去除濁度
之作用機制 14
圖2-5 高分子聚合物破壞膠體穩定性之架橋模式 16
圖2-6 不同濁度下之混凝狀況 21
圖2-7 氫氧化鋁溶解平衡圖 24
圖2-8 氫氧化鐵之溶解平衡圖 25
圖3-1 研究方法之基本流程 36
圖3-2 NPDOC之標準檢量線 44
圖3-3 鋁含量及種類分析實驗流程 46
圖4-1 南化淨水場一年期間濁度之變動 50
圖4-2 南化淨水場多元氯化鋁混凝量隨時間之變化 53
圖4-3 南化淨水場以多元氯化鋁 (PAC) 加藥量與原水濁度之關係 54
圖4-4 初始濁度150 NTU之人工原水其硫酸鋁之瓶杯試驗 56
圖4-5 初始濁度150 NTU之人工原水加硫酸鋁其鹼度消耗情形 57
圖4-6 兩種人工原水其初始濁度150 NTU經明礬混凝後,其
上澄液之鋁量與混凝劑量之關係 59
圖4-7 不同混凝劑對人工配製初始濁度150 NTU之原水
濁度去除之影響 61
圖4-8 不同混凝劑對人工配製初始濁度250 NTU之原水
濁度去除之影響 63
圖4-9 不同混凝劑對人工配製初始濁度450 NTU之原水
濁度去除之影響 65
圖4-10 以11μm濾紙過濾前後濁度之變化 (初始濁度250 NTU) 67
圖4-11 以11μm濾紙過濾前後濁度之變化 (初始濁度450 NTU) 68
圖4-12 添加高分子凝聚劑作為助凝劑進行人工原水混凝後,其
殘留濁度與添加高分子凝聚劑之關係 70
圖4-13 人工原水經混凝後其界達電位與添加
高分子凝聚劑量之關係 72
圖4-14 人工原水混凝沉澱後污泥體積與添加高分子劑量之關係 74
圖4-15 添加高分子凝聚劑作為助凝劑進行人工原水混凝後,其
殘留濁度與添加高分子凝聚劑之關係 75
圖4-16 人工原水經混凝後其界達電位與添加
高分子凝聚劑量之關係 77
圖4-17 人工原水混凝沉澱後污泥體積與添加高分子劑量之關係 78
圖4-18 初始濁度150 NTU人工原水經硫酸鋁混凝後
其混凝劑量與殘留鋁含量之關係 79
圖4-19 初始濁度150 NTU人工原水經多元氯化鋁混凝後
其混凝劑量與殘留鋁含量之關係 81
圖4-20 初始濁度250 NTU人工原水經硫酸鋁混凝後
其混凝劑量與殘留鋁含量之關係 82
圖4-21 初始濁度250 NTU人工原水經多元氯化鋁混凝後
其混凝劑量與殘留鋁含量之關係 83
圖4-22 初始濁度150 NTU之人工原水其靜置後之污泥體積與
其混凝劑量之關係 85
圖4-23 初始濁度250 NTU之人工原水其靜置後之污泥體積與
其混凝劑量之關係 86
圖4-24 初始濁度450 NTU之人工原水其靜置後之污泥體積與
混凝劑量之關係 87
圖4-25 靜置後上澄液之顆粒總數量與硫酸鋁劑量之關係 90
圖4-26 靜置後上澄液之顆粒總數量與PAC劑量之關係 91
圖4-27 靜置後上澄液之顆粒總數量與氯化鐵劑量之關係 92
圖4-28 靜置後上澄液之顆粒粒徑分佈與硫酸鋁劑量之關係 93
圖4-29 靜置後上澄液之顆粒粒徑分佈與多元氯化鋁劑量之關係 94
圖4-30 靜置後上澄液之顆粒粒徑分佈與氯化鐵劑量之關係 95
圖4-31 不同混凝條件下之平均體積粒徑變化 96
參考文獻 Akitt, J. W., and Farthing, A., “Aluminum-27 nuclear magnetic resonance aluminum metal”, J. Chem. Soc. Dalton. Trans., pp. 1624 (1981).
Amirtharajah, A. and Mills, K. M., “Rapid-mix Design for mechanisms of Alum Coagulation”, Jour. AWWA., Vol. 74, No. 4, pp. 210-216 (1982).
Amirtharajah, A. and O’Melia, C. R., “Chap 6: Coagulation Processes: Destabilization, Mixing and Flocculation”, Water Quality & Treatment. 4th , AWWA., pp. 269-365 (1990).
Auton, A., “Colorimetric Estimation of Aluminum with Pyrocatechol Violet”, Analytical Chemistry, Vol. 32, No. 6, pp. 725-726 (1960).
Benefield, L. D., Judkins, J. F., Jr., and Weand, B. L., “Process Chemistry for Water and Wastewater Treatment”, Preentice-Hall, Inc. Englewood Ciffs (1982).
Benoufella, F., Laplanche, A., Boisdon, V., and Bourbigot, M. M., “Elemination of Microcystis Cyanobacteria (Blue-Green Algae) by an Ozonflotation Process : A Pilot Plant Study”, Wat. Sci. Tech., Vol. 30, No. 8, pp.245-257 (1994).
Bersch, P. M., “Conditions for Al-13 Polymer Formation in Partially Neutralized Aluminum Solutions”, Soil. Sci. Soc. Am. J., Vol. 51, pp. 825 (1987).
Bowie, J. E. Jr., and Bond, M. J., “Chemical Precipitation Coagulation for Organic Color Removal from Groundwaters”, Water Resources Bulletin, Vol. 13, No. 6, pp.1269 (1977).
Bottero, J. Y., Flessinger, J. M., and Poirier, J. E., “Studies of hydrolyzed aluminum chloride solutions. Ι. Nature of aluminum species and composition of aqueous solution”, J. Phys. Chem., Vol. 84, No. 22, pp. 2933 (1980).
Carns, K. E., and Parker, J. D., “Using Polymers with Direct Filtration”, J. AWWA, Vol. 77, No. 3, pp. 44-49 (1985).
Committee Report, “Organics Removal by Coagulation:A Review and Research Needs”, Jour. AWWA, Vol. 71,No. 10, pp.588-603 (1979).
Dempsey, B. A., Sheu, H., and Ahmed T. M., and Mentink, J., “Polyaluminum Chloride and Alum Coagulation of Clay-Fulvic Acid Suspensions”, J. Am. Water Works Assoc., Vol. 77, No. 3, pp. 74 (1985).
Dentel, S. K., “Application of the precipitation-Charge Neutralization Model of Coagulation”, Environ. Sci. Technol., Vol. 22, No. 7, pp.825-832 (1988).
Dentel, S. K., “Coagulation Control in Water Treatment”, Critical Reviews in Environmental Control, Vol. 27, No. 1, pp. 41-135 (1991).
Dougan, W. K., and Wilson, A. L., “The Absorptiometric Determination of Aluminum in Water. A Comparison of Some Chromogenic Reagents and the Development of an Improved Method”, Analyst, Vol.99, pp.413-430 (1974).
Driscoll, C. T., et al., “Aluminum Speciation and Toxicity in Upland Water”, Environmental Chemistry Toxicity of Aluminum, Lewis Publishers (1987).
Ebie, K., and Amano, S., “Fundamental Behavior of Humic Acid and Kaolin in Direct Sand Filtration of Simulated Natural Surface Water”, Wat. Sci. Technol., Vol. 27, No. 10, pp. 61-70 (1993).
Edzwald, J. K., “Polymer Coagulation of Humic Acid Waters”, Jour. of Envir. Engrg. Div., ASCE, Vol. 103, pp. 989 (1979).
Farrington, T. A. and Nowakowski, T., “Flocculation of aqueous paint waste”, U.S. 4, 401, pp. 574 (1983).
Goenaga, K., Bryant, R., and Williams, D. J. A., “Influence of Sorption Processes on Aluminum Determinations in Acidic Waters”, Anal. Chem., Vol.59, pp.2673-2678 (1987).
Gregory, J., “The Role of Colloid Interactions in Solid-Liquid Separation”, Wat. Sci. Technol., Vol. 27, No. 10, pp.1-17 (1993).
Hargesheimer, E. E., and Lewis, C. M., Evaluation of Particle Counting as a Measure of Treatment Plant, AWWA Research Foundation (1992).
Hoyer, O. and H. Schell, “Monitoring Raw Water Quality and Adjustment of Treatment Processes-Experiences at the Wahnbach Reservoir”, Wat. Sci. Tech., Vol.37, No. 2, pp.43-48 (1998).
Innocenti, P., “Techniques for Handling Water Treatment Sludge”, Opfolw, Vol.14, No. 2, pp.1-6 (1988).
Jeffcoat, W. B., and Singley, J. E., “The Effect of Alum Concentration and Chemical-Addition Times on Coagulation”, J. AWWA, Vol.67, No. 4, pp.177 (1975).
Kavanaugh, M. C., “Modified Coagulation for Improved Removal of Trihalomethane Precursors”, J. AWWA, Vol. 70, No. 11, pp. 613-620 (1978).
Kawamura, S., “Considerations on Improving Flocculation”, J. AWWA, Vol. 68, No. 6, pp.328 (1976).
Kawamura, S., “Optimization of Basic Water of Process-Design and Operation : Sedimentation and Filtration”, J. Water SRT-Aqua, Vol. 45, No. 3, pp. 130-142 (1996).
Kayode, T. O., and Gregory, J., “A New Technique for Monitoring Alum Sludge Conditioning”, Wat. Res., Vol.22, No.1, pp85-90 (1986).
Kudermann, G. and Blaufuss, K. H., “Manufacture of basic aluminum chloride solutions”, Eur. Pat. Appl., Vol. 554, pp. 562 (1992).
La Mer , V. K., “Coagulation Symposium Introduction”, Jour. Colloid Sci., Vol.19, pp.291-293 (1964).
Lawler, D. F., “A Particle Approach to the Thickening Process”, Unpublished Ph.D. Dissertation. University of North Carolina at Chapel Hill (1979).
Lee, D. J. and Y. H. Hsu, “Fast Freeze/thaw treatment on Excess Activated Sludges : Floc Structure and sludge Dewaterability”, Environmental Science and technology, Vol. 28, pp.1441-1449 (1994).
Letterman, R. D., and Driscoll, C. T., “Survey of Residual Aluminum in Finished Water”, J. AWWA, Vol. 80, No. 4, pp. 154-158 (1988).
McLachlan, D. R. C., “Aluminium and the Risk for Alzheimer’s Disease, Environmentrics”, Vol. 6, pp. 223-275 (1995).
Narkis, N., and Rebhun, M., “The Mechanism of Flocculation Processes in the Presence of Humic Substances”, J. AWWA, Vol. 67, No. 2, pp. 101 (1975).
O’Melia, C. R., “Coagulation and Flocculation”, Physicochemistry Processes for Water Quality Control, W. J. Weber, Jr., ed., John Wiley & Sons, Inc., New York, pp.62-85 (1972).
O’Melia, C. R., “Coagulation and Flocculation”, Chapter 2 in Physicochemical Process for Water Quality Control, W. J. Weber Jr., ed, Wiley Intercience, New York (1972).
Packham, R. F. “Some Studies of the Coagulation of Dispersed Clays with Hydrolyzing Salts”, Jour. of Colloid Sci., Vol. 20, No. 1, pp. 81-92 (1965) .
Rout, D., R. Verma and S. K. Agarwal, “Polyelectrolyte Treatment-An Approach for Water Quality Improvement”, Water Science and Technology, Vol. 40, No. 2, pp. 137-141 (1999).
Safe Drinking Water Committee, National Academy of Science, Drinking Water and Health, Vol. 4, National Academy Press, Washington, D. C., pp.155-167 (1982).
Seoeyink, V. K. and Jenkins, D., Water Chemistry, John Wiley & Sons, New York, pp. 262-270 (1982).
Stumm, W. and O’Melia, C. R., “Stoichometry of Coagulation”, Jour. AWWA, Vol. 60, No. 5, pp.514-539 (1968).
Stumm, W., and Morgan, J. J., “The Solid-Solution Interface”, in Aquatic Chemistry, John Wiley & Sons, Inc., New York, pp.612-614 (1981).
Stumm, W. and J. J. Morgan, “Aquatic Chemistry”, John Wiley & Sons, 3th edition, pp. 263-274 (1996).
Stumm, W., and O’Melia, C. R., “Stoichiometry of Coagulation”, J.AWWA, Vol. 60, pp.514-539 (1968).
Yao, C., “The preparation of polymeric aluminum chloride (PACl) and its application in water treatment ”, The John Hopkins University , PHD, pp.93-161 (1988).
Twort, A. C., Ratnayaka, D. D., and Brandt, M. J., Water Supply, pp.198-221 (2000).
Yao, C., The Preparation of Polymeric Aluminum Chloride and Its Application in Water Treatment, Doctoral Dissertation, the Johns Hopkins University, Baltimore, MD (1987).
Update, J.AWWA, Vol. 81, No.2, February (1989).
Van Benschoten, J. E. and Edzwald, J. K. “ Measuring Aluminum During Water Treatment :Methodology and Application”, J. AWWA, Vol. 82. No. 3, pp.71~78 (1990).
Van Benschoten, J. E. and Edzwald, J. K., “Chemical Aspect of Coagulation Using Aluminum Salt-Ι. Hydrolytic Reactions Alum and Poly Aluminum Chloride”, Wat. Res., Vol. 24, No. 12, pp.1519-1526 (1990).
Van Benschoten, J. E. and Edzwald, J. K., “Chemical Aspect of Coagulation Using Aluminum Salt-Ⅱ. Coagulation of Fulvic Acid Using Alum and Polyaluminum Chloride”, Wat. Res., Vol. 24, No. 12, pp.1527-1535 (1990).
湯鴻霄, 羥基聚合氯化鋁的絮凝型態學, 環境科學學報, 18(1), 1 (1998).
林月娟,淨水場污泥特性及污染負荷研究,國立台灣大學環境工程學研究所碩士論文,民國七十三年。
蔣中基,建立國內淨水場綜合效能評估制度研究,中華民國自來水協會技術研究委員會,民國八十九年。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2003-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2003-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw