進階搜尋


 
系統識別號 U0026-0812200910214584
論文名稱(中文) 室內建材中揮發性有機物及甲醛檢測標準方法之研究
論文名稱(英文) A Study to Establish a Standard of Test Method and Procedure to the VOC and Formaldehyde Emitted from Interior Materials
校院名稱 成功大學
系所名稱(中) 環境醫學研究所
系所名稱(英) Institute of Environmental and Occupational Health
學年度 90
學期 2
出版年 91
研究生(中文) 林冠謂
研究生(英文) Guan-Wei Lin
電子信箱 blex29@kimo.com.tw
學號 s7689101
學位類別 碩士
語文別 中文
論文頁數 149頁
口試委員 口試委員-蘇慧貞
口試委員-江哲銘
召集委員-鄭福田
指導教授-李俊璋
口試委員-蔡俊鴻
中文關鍵字 乾濕式建材  逸散速率測試  揮發性有機物質  甲醛  乾濕式建材  小型環境控制箱 
英文關鍵字 formaldehyde  emission rate  wet building material  dry building material  small chamber  VOCs 
學科別分類
中文摘要 一般人大部分時間均處於室內場所,所以室內空氣污染物與人體健康的關係更為密切。過去研究發現常用的建築材料會逸散出大量的甲醛及VOCs;在VOCs成分上則以Toluene、m,p-Xylene為最常見。本研究主要目的為利用小型環境控制箱,針對居家環境常見之室內建材,包含木地板、木心板及水泥漆、調和漆進行VOCs及甲醛逸散研究,並建立一套適合國內建材之有機物質逸散標準檢測分析方法。
本研究主要參考美國ASTM 5116-97標準方法,建構小型環境控制箱;各項環境參數分別設定如下:溫度25℃、相對溼度50﹪及換氣率為0.5 ACH。乾式建材如木地板及木心板進行甲醛及VOCs (Benzene、Toluene、Ethylbenzene、Xylene) 的量測;濕式建材如水泥漆、調和漆則進行VOCs測試。VOCs是以含Carbotrap及Carboxen1000/1003三種不同吸附劑之吸附管予以定流量捕集濃縮,經熱脫附裝置熱脫附後注入氣相層析儀/火焰離子偵測器(GC/FID),進行定量分析;甲醛則以含10% hydroxymethyl piperidine處理之XAD-2管進行採樣及衍生化後,經甲苯脫附後以氣相層析儀/火焰離子偵測器(GC/FID)進行分析;VOCs及甲醛定量結果再利用First order model計算其衰減速率。每種建材進行連續監測48小時,以了解VOCs及甲醛之逸散率時序變化情形。
目前美國所訂定之室內空氣品質標準中,甲醛濃度不可超過100ppb,而TVOC則建議不可超過300μg/m3;各種建材VOCs及甲醛逸散量測結果顯示,木心板所逸散之甲醛於四小時內達到最高濃度( 751 ppb),且於連續監測48小時後,其逸散濃度仍達119 ppb,已超過甲醛建議值100ppb;其最大逸散速率高達1.26 mg/ m2*h;TVOCs則於實驗進行3小時內逸散濃度達到487μg/m3,且於實驗進行9小時後其衰減濃度才會低於建議值300μg/m3;TVOC最大逸散速率達到590μg/m2*h。調和漆所逸散之VOCs其中苯濃度於實驗開始達到6mg/m3,並於26小時後衰減至0.02mg/m3;其逸散速率高達45mg/m2*h;TVOCs也於實驗進行30分鐘內達到最大逸散濃度99mg/m3,於48小時後則衰減至11.5mg/m3,遠高於300μg/m3;TVOCs逸散速率更高達1115 mg/ m2*h。木地板之甲醛於實驗進行8小時內達到最大逸散濃度107ppb,並於28小時後,甲醛濃度衰減至100ppb以下;水泥漆及木地板之TVOCs逸散濃度分別於1及1.5小時內達到最大值61及81μg/m3,於分析過程中均低於建議值300μg/m3。若以First-order model模擬木心板、木地板及調和漆等進行裝修室內空間(長、寬及高分別為3×3×2.5m)及辦公桌(長、寬及高分別為90×60×90 cm),則甲醛及TVOC逸散濃度值更高達1905ppb 及171910 mg/m3,遠超過室內建議值;且苯濃度更高達591mg/m3。
木心板中甲醛及TVOC逸散濃度均超過美國室內空氣品質之建議值,並且用來裝修室內空間時於0.1ACH下甲醛濃度更高達1905ppb,對人體健康可能造成危害;因此未來因於製程中減少甲醛使用或用其它毒性較小的物質予以替代等方式以減少甲醛之逸散。調和漆各VOCs逸散濃度更高於其他分析建材,且有苯之逸散,對於人體會產生致癌效應;而分析過程中,水泥漆TVOCs逸散濃度均低於建議值300μg/m3,因此未來在進行室內空間裝修時,也建議以水泥漆代替調和漆之使用,以改善室內空氣品質,增進人員健康。目前台灣地區對於室內空氣品質及建材中揮發性有機物質及甲醛之逸散並無詳加規範,未來也因透過法令規定以維護室內空氣品質及國人之健康。





英文摘要 People spend the majority of their time indoors, and concentrations and characteristics of indoor pollutants are therefore posing greater risk affecting human health. Many studies have demonstrated that large amount of formaldehyde and VOCs can emit from commonly used building materials. The most frequently isolated VOCs were Toluene and m,p-Xylene, The main point in this research is using small chamber to measure the emission rate of VOCs and formaldehyde for the building interior materials, and to establish a domestic standard of test method.
In this study, a small environmental chamber and sampling /analysis system refer to the standard method D5116-97 of U.S ASTM was set up for the testing of VOCs and formaldehyde emission rates of building materials. The environmental conditions of the chamber were set as 25±0.5℃, 50±2﹪, and 0.5 ACH. Four materials were selected to evaluate: (1)wood-based panels (2)wood-based floors (3)water-base paint (4)latex paint. VOCs were sampled on stainless steel tubes with Carbotrap and Carboxen1000/1003, and were desorbed with thermal desorption and analyzed by GC/FID. Formaldehyde was sampled on glass tube with XAD-2, and desorbed with toluene. Analysis and quantification was by GC/FID.
At present, the government in USA has recommended an indoor air quality goal for formaldehyde of 100 ppb and for TVOC of 300μg/m3. For wood-based panels, the highest emission concentration of formaldehyde was 751 ppb at 4 hours after the test beginning. After 48 hours, it decreased to 119 ppb and still over the 80ppb. The highest emission rate of formaldehyde was 1.26 mg/ m2*h. Besides, the highest emission concentration of TVOCs was 487 μg/m3, and below 300μg/m3 after 9 hours .The highest emission rate of TVOCs was 590μg/m2*h. The emission rate for latex paint was the highest from others. Benzene was detected and the highest emission concentration was 6mg/m3 at 30 min after the test beginning. The highest emission rate of TVOCs was 1115 mg/m2*h. For wood-based floor, the highest emission concentration of formaldehyde was 107 ppb at 8 hours after test beginning, and it was below 100 ppb after 28 hours. The highest emission concentration of TVOCs for wood-based floor and water-based paint were below 300μg/m3. When using the wood-based panels , wood-based flooring and latex paint to decorate the environment (length, width and high is 3×3×2.5 m) and office table(length, width and high is 90×60×90 cm), the highest concentration of formaldehyde and TVOCs were 1905 ppb and 171910 mg/m3. The concentration of benzene was 591 mg/m3..
The concentration of formaldehyde and TVOCs of wood-based panel were over the recommends in USA. Using this type of wood-based panel to decorate, the concentration of formaldehyde was 1905 ppb. Furthermore, the emission rate for latex paint was the highest from others. We should use water-based paint to replace latex paint for prevention of indoor air pollution. Until now, we don’t have an indoor air quality goal for VOCs or formaldehyde. The result of our research will be basis of establishing the guild-lines of indoor environment quality and framing policies.





論文目次 摘要……………………………………………………………………………… I
Abstract………………………………………………………………………….. II

目錄……………………………………………………………………………...III.
圖目錄…………………………………………………………………………… Ⅴ
表目錄…………………….……………………………………………………... Ⅶ
第一章 緒章…………………………………………………………………… 1
1.1 研究背景………………………………………………………………... 1
1.2 研究目的………………………………………………………………... 3
第二章 文獻回顧……………………………………………………………… 4
2.1 揮發性有機物之定義…………………………………………………... 4
2.2 室內揮發性有機物與甲醛來源及種類……………………………….. 4
2.3 室內建材與揮發性有機物及甲醛的關係…………………………….. 8
2.4 ASTM D5116-97………………………………………………………... 10
2.5 相關標準測試方法…………………………………………………….. 12
2.6 揮發性有機物逸散機制……………………………………………….. 14
2.6.1 蒸發質量傳遞……………………………………….……………… 14
2.6.2 脫附作用……………………………………………………………. 14
2.6.3 物質內的擴散作用…………………………………………………. 15
2.6.4 影響質傳變數………………………………………………………. 15
2.6.5 環境因子之影響……………………………………………………. 15
2.7 揮發性有機物之逸散速率模式………………………………………... 16
2.8 VOCs及甲醛對人體健康影響…………………………………………. 18
2.8.1 甲醛對人體健康之影響……………………………………………. 18
2.8.2 揮發性有機物對人體健康之影響…………………………………. 19
2.9 國內外室內空氣品質標準與建議值…………………………………... 19
第三章 研究材料與方法……………………………………………………… 22
3.1 研究架構……………………………………...………………………… 22
3.2 設備…………………………………………...………………………… 23
3.2.1 環境控制箱………………………………...……………………….. 24
3.2.2 潔淨空氣產生系統………………………...……………………….. 25
3.2.3 環境測量與監控系統……………………...……………………..… 26
3.2.4 採樣及分析裝置…………………………...……………………..… 26
3.3 揮發性有機物採樣分析方法………………...……………………..….. 26
3.4 甲醛採樣分析方法………………………………...………………….... 30
3.5 建材樣本之選擇………………………………...…………………..….. 30
第四章 實驗結果與討論……………………………...…………………..…... 31
4.1 環控箱穩定度測試…………………………...…………………..….…. 31
4.2 標準方法的建立…………………………...…………………..….……. 32
4.2.1 室內建材中VOC逸散檢測標準分析方法..……………..……….. 33
4.2.2 室內建材中甲醛逸散檢測標準分析方法…………..….……….…. 35
4.3 數據之品保與品管…………………………...…………………..….……. 38
4.3.1 檢量線之建立與製作……………………...…………………..…… 38
4.3.2 準確度、精密度及方法偵測下限………...…………………..…… 38
4.3.3 環控箱之空白分析………………………...…………………..…… 39
4.3.4 本研究與ASTM D5116-97之比較……...…………………..…… .40
4.4 建材測試結果…………………………...…………………..….………. 40
4.4.1 木心板…………………………...…………………..….…………... 41
4.4.2 木地板…………………………...…………………..….…………... 42
4.4.3 水泥漆…………………………...…………………..….…………... 43
4.4.4 調和漆…………………………...…………………..….…………... 44
4.5 模擬室內空間之逸散變化情形…...…………………..….……………. 45
第五章 結論與建議…………………………...…………………..….……….. 48
5.1 結論…………………………...…………………..….…………………. 48
5.2 建議…………………………...…………………..….…………………. 50

圖目錄
圖3-4 熱脫附裝置之採樣管………………………………………………… 57
圖4-1 環控箱溫溼度穩定度測試……………………………………………. 57
圖4-2 環控箱混合度測試(張志成,1998) …………………………….…… 58
圖4-3 修正前後環控箱進氣口之變化情形…………………………….……... 58
圖4-4 環控箱進氣口修正前後空氣流場模擬結果…………………….…….. 59
圖4-5 不鏽鋼建材基座………………………………………………………… 59
圖4-6、室內建材有機物質逸散研究之配置圖……………………………….. 60
圖4-7 室內建材檢測分析流程圖……………………………………………… 61
圖4-8 室內建材甲醛逸散研究之流程簡圖…………………………………... 62
圖4-9、甲醛採樣及分析流程圖…………………………………………….… 63
圖 4-10 Benzene 低、高濃度檢量線………………………………….…….… 64
圖 4-11 Toluene 低、高濃度檢量線………………………………….…….…. 64
圖 4-12 ethylBenzene 低、高濃度檢量線…………………………….…….… 64
圖 4-13 m,p-Xylene 低、高濃度檢量線…………………………….……...…. 65
圖 4-14 o-Xylene 低、高濃度檢量線…………………………….…….….…. 65
圖4-15 甲醛檢量線………………………………………………………….… 65
圖4-16 木心板中總揮發性有機物之逸散濃度變化情...…………………….. 66
圖 4-17 木心板TVOC逸散速率變化情形…………………………………… 66
圖4-18木心板中各成份VOC所佔百分比……………………………………. 67
圖4-19 木心板之甲醛濃度變化情形………………………………………….. 67
圖4-20 木心板甲醛之逸散速率變化情形……………………………………. 68
圖4-21 木地板之TVOC濃度變化情形…...………………………………….. 68
圖4-22木地板之TVOC逸散速率變化情形………………………………….. 69
圖4-23地板中各VOC所佔百分比……………………………………………. 69
圖4-24 木地板甲醛逸散濃度變化情形……………………………………….. 70
圖4-25 木地板甲醛逸散速率變化情形……………………………………….. 70
圖4-26 水泥漆TVOC逸散濃度變化情形……………………………………. 71
圖4-27 水泥漆TVOC逸散速率變化情形……………………………………. 71
圖4-28 水泥漆中各VOC所佔之百分比………………………………………. 72
圖4-29 調和漆中Benzene之逸散濃度變化情形……………………………. 72
圖4-30 調和漆中Benzene之逸散速率變化情形…………………………….. 73
圖4-31 調和漆中TVOC之逸散濃度變化情形………………………………. 73
圖4-32 調和漆中TVOC之逸散速率變化情形………………………………. 74
圖4-33 調和漆中各VOC所佔百分比………. ………………………………. 74
圖4-34 模擬室內空間之TVOC濃度變化情形(調和漆) ………………….… 75
圖4-35 模擬室內空間之Benzene濃度變化情形(調和漆) ………………….. 75
圖4-36 模擬室內空間之甲醛濃度變化情形………………………………….. 76
圖4-37模擬室內空間之TVOC濃度變化情形(水泥漆)………………….. 76


表目錄
表2-1 有機污染物分類………………………………………………………... 77
表2-2 室內揮發性有機物分類表……………………………………………... 77
表2-3 室內主要污染物及其來源……………………………………………… 78
表2-4 室內常見揮發性有機物………………………………………………... 78
表2-5、室內外環境中甲醛濃度值比較………………………………………. 79
表2-6 裝潢建材對室內空氣品質影響的實測案例…………………………… 80
表2-7 42種建材量測結果中最常見及濃度最高之VOCs種類……………. 81
表2-8 建材逸散之VOCs之種類及濃度………………………………...……. 82
表2-9 ASTM D5116-97所列舉之各項參數值…………………………...……. 84
表2-10 相關建材檢測之測試方法...………………………………………….. 85
表2-11 甲醛濃度對人體的影響……………………………………………….. 85
表2-12 室內常見VOCs對人體健康危害…………………………………….. 86
表2-13普通合板、特殊合板(JAS)………………………………………… 87
表2-14澳洲木質建材依甲醛濃度值之分級…………………………………. 87
表2-15 芬蘭建材之分級標準…………………………………………………. 87
表2-16 國內外建築物內室內空氣品質標準建議值…………………………. 88
表3-1 Trapper所充填的三種不同吸附劑……………………………………. 88
表3-2 分析建材之種類………………………………………………………… 89
表4-1 Benzene低、高質量數對波峰面積之關係…………………………….. 89
表4-2 Toluene低、高質量數對波峰面積之關係….………………………….. 89
表4-3 ethylBenzene低、高質量數對波峰面積之關係……………………….. 89
表4-4 m,p-Xylene低、高質量數對波峰面積之關係.……………………..….. 90
表4-5 o-Xylene低、高質量數對波峰面積之關係….……………………..….. 90
表4-6 甲醛質量數與波峰面積值之關係….……………………..……..…….. 90
表4-7 各化合物之準確度、精密度及方法偵測下限……………………..….. 91
表4-8 環控箱內各化合物之背景濃度值….……………………..……..…….. 91
表4-9 本研究設定與ASTM D5116-97之比較…………………..……..…….. 92
表4-10 木心板TVOCs逸散濃度量測結果….……………………..…….….. 93
表4-11 木心板甲醛逸散濃度量測結果….……………………..……….…….. 93
表4-12 木地板TVOCs逸散濃度量測結果……………………..……….……. 94
表4-13 木地板甲醛逸散濃度量測結果….……………………..……….…….. 94
表4-14 水泥漆TVOCs逸散濃度量測結果……………………..……….……. 95
表4-15 調和漆Benzene逸散濃度量測結果……………………..…………… 96
表4-16 調和漆TVOCs逸散濃度量測結果……………………..………...….. 97
表4-17 模擬室內環境TVOCs逸散濃度結果(0.1 ACH)………..………...….. 98
表4-18 模擬室內環境TVOCs逸散濃度結果(0. 5 ACH)……..………...….. 99
表4-19 模擬室內環境TVOCs逸散濃度結果(1 ACH)………..………...….. 100
表4-20 模擬室內環境Benzene逸散濃度結果(0.1 ACH)………..………...… 101
表4-21 模擬室內環境Benzene逸散濃度結果(0.5 ACH)………..………...… 102表4-22 模擬室內環境Benzene逸散濃度結果(1 ACH)………..………...…. 103
表4-23 模擬室內環境中甲醛逸散濃度結果(0.1 ACH)………..………...…….104
表4-24 模擬室內環境中甲醛逸散濃度結果(0.5 ACH)………..………...…….104
表4-25 模擬室內環境中甲醛逸散濃度結果(1 ACH)………..………...……....105
表4-26 模擬室內空間中TVOCs逸散濃度變化情形(水泥漆) .………...…….106

參考文獻 1、 ASTM D5116-97: Standard Guild for Small-Scale Environmental Chamber Determination for Organic Emission from indoor materials/ products. American Testing and Materials, West Conshohocken, PA, USA, 1997.
2、 ASTM D6330: Standard Practice for Determination of Volatile Organic Compounds Emission from Wood-Based Panels using Small Environmental Chamber under defined test conditions. American Testing and Materials, West Conshohocken, PA, USA, 1999.
3、 American Thracic Society : Environmental controls and lung disease. Am Rev Respir. Dis., 1990; 142:915.
4、 Anderson, I., Lundquist, G.R., Molhave, L.,. Indoor air pollution due to chipboard used as a construction material. Atmospheric Environment 1975.,9, 1121-1127.
5、 Berglund Birgitta, Ingegerd Johansson and Thomas Lindvall, Volatile Organic Compounds from Used Building Materials in a Simulated Chamber Study, Environmental International, 1989,V.15, 383-397.
6、 Breysse, P.A., Formaldehyde levels and accompanying symptoms associated with individuals residing in over 1000 conventional and mobile homes in the state of Washington. Indoor Air ,1984,3, 403-408.
7、 Broder I, et al. Comparison of health of occupations and characteristics of house among control homes and homes insulated with urea-formaldehyde foam insulation,I. Methodology Environ. 1988, 45:414-55.
8、 Environmental Health Criteria 207: Acetone. pp. 1-7 (1998) by the International Programme on Chemical Safety (IPCS) under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation and the World Health Organization.:1994 ;60 297
9、 Ekbreg LE, "Volatile organic compounds in office buildings," Atmos. Environ.;1994, 28 (22): 3571-3575.
10、 Ellenhorn, M.J. and D.G. Barceloux. Medical Toxicology - Diagnosis and Treatment of Human Poisoning. New York, NY: Elsevier Science Publishing Co., Inc. 1988. 962.
11、 First MW, Constituents of side stream and mainstream tobacco and markers to quantify exposure to them, In : Gammage RB, Kaye SV, eds., Indoor air and Human Health, Chelsea, MI : Lewis Publishers. 1985; 195-203.
12、 Grant, W.M. Toxicology of the Eye. 3rd ed. Springfield, IL: Charles C. Thomas Publisher, 1986. 927
13、 Guerin MR, Higgins CE, and Jenkins RA. Measuring environmental emissions from tobacco combustion : side stream cigarette smoke literature review. Atmospheric Environment. 1987; 21:291-97.
14、 H. N. Knudsen, U. D. Kjaer, P. A. Nielsen, P. Wolkoff, Sensory and Chemical Characterization of VOC Emission from Building products: Impact of Concentration and Air Velocity, Atmospheric Environment, 1999,33, 1217-1230.
15、 Hartwall A., Level of Volatile Organics in Indoor Air, Proceedings of the 78th Annual Meeting of the Air pollution Control Association. Detroit, 1985.
16、 Hine,A. L., Ghosh, T. K., Loyalka, S. A., and Warder, R. C., Jr., Invesatigation of Co-sorption of Gases and Vapors as a Means to Enhance Indoor Air Quality. ,Report No. GRI-90/0194, Gas Research Institute, Chicago, III., NTIS Document , 1991NO.PB 91-178.
17、 Hines, A.L., Ghosh, T.K., Loyalka, S.K., Warder, R.C. (Eds.). Indoor Air –Quality and control. Prentice-Hall, Englewood Cliffs, NJ. , 1993
18、 Hodgson M. Levin H. Wolkoff P., Volatile organic compounds and indoor air., Journal of Allergy & Clinical Immunology. ,1994.94(2 Pt2): 296-303,.
19、 IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man. Geneva: World Health Organization, International Agency for Research on Cancer,1972-PRESENT. (Multivolume work). 1982:29, 361
20、 IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man. Geneva: World Health Organization, International Agency for Research on Cancer,1972-PRESENT. (Multivolume work).,Guerin MR. Chemical composition of cigarette smoke, Banbury Report 3 : A Safe Cigarette, Cold Spring Harbor Laboratory. 1980; 191-204.
21、 Janes A. P. Indoor air quality and health, Atmispheric Environment 1999, 33 ,4535-4564.
22、 K. T. Morgan, X. Z. Jiang, T. B., Starr, W. D. Kerns, More Precise Location of Nasal Tumors Associated with Chronic Exposure of F-344 rats to formaldehyde gas. Toxicol. Appl. Pharmacol. 1986,82, 264-271.
23、 Kaassen CD. Casarett and Doll’s Toxicology: The Basic Science of Poison. New York Mc-Graw-Hill Companines Inc., 1996.
24、 L. E. Sparks, Z. Guo, J. C. Chang, B.A. Tichenor, Volatile Organic Compound Emission form Latex Paint- Part 1. Chamber Experiments and Source Model Development, Indoor Air, 1999, 9: 10-17..
25、 Lance Wallace, Indoor particles : A review. J. of AWMA. 1996; 46:98-126.
26、 Leovic KW, Sheldon LS, Whitaker DA, Hetes RG, Calcagin JA, Baskir JN. Measurement of indoor air emissions from dry-process photocopy machines. J. Air & Waste Manage Assoc. 1996, 46:821-29.
27、 Levin H, et al. Building materials and indoor air quality. OCCUPATIONAL MEDICINE. 1989;4(4):667-93.
28、 L. Fang, G. Clausen & P. O. Fanger. Impact of temperature and humidity on chemical and sensory emissions from building materials. Indoor Air. 1999; 9: 193-201.
29、 Maroni, M., Seifert, B., Lindvall, T. (Eds.) Indoor Air Quality – a Comprehensive Reference Book. Elsevier, Amsterdam. , 1995.
30、 Molhave L, "Indoor air pollution due to organic gases and vapours of solvents in building materials," Environ. Int.,1982, 8: 117-27.
31、 Nielson, K.K., Rogers, V.C., Holt, R.B., Pugh, T.D., Grondzik,W.A., de Meijer, R.J.,. Radon penetration of concrete slab cracks, joints, pipe penetrations, and sealants. Health Physics ,1997,73 (4), 668-678.
32、 Nistchke K, Burek J, Bell T, Kociba R, Rampy L, McKenna M. Methylene chloride: a 2-year inhalation toxicity and oncogenicity study in rats. Fundam Appl. Toxicol. 1988; 11:48-59.
33、 Otto DA, Hundnell HK, House DE, Molhave L, Counts W. Exposure of humans to a volatile organic mixture. I. Behavioral assessment. Arch. Environ. Health. 1992; 47: 23-30.
34、 Patty, F. (ed.). Industrial Hygiene and Toxicology: Volume II: Toxicology. 2nd ed. New York: Interscience Publishers, 1963.
35、 Potter, P.C., Juritz, J., Little, F., McCaldin, M., Dowdle, E.B.,. Clustering of fungal-allergen specific IgE antibody responses in allergic subjects. Annals of Allergy ,1991, 66 (2), 149-153.
36、 Quackenboss JJ, Kanarek MS, Spengler JD, Letz R. Personal monitoring for nitrogen dioxide exposure: methodological considerations for a community study. Environ Int 1982; 8:249-58.
37、 R. A. Woutersen , V. J. Feron, Localization of Nasal Tumors in Rats Exposed to Acetaldehyde or Formaldehyde, in: V. J. Feron, M.C. Bosland (Eds.), Nasal Carcinogensis in Rodents: Relevance to Human Health Risk, Pudoc Publishing, Veldhoven, 1989, pp. 70-75.
38、 Rikke Bramming Jorgensen, Sorption Behaviour of Volatile Organic Compounds on Materials Surfaces- The Influence of Combinations of Compounds and Materials Compared to Sorption of Single Compunds on Single Materials, Environmental International, 1999,Vol25, No. 1, PP. 17-27.
39、 Robinson J., Nelson, W. C., National Human Activity Pattern Suvey Data Base. United States Environmental Protection Agency, Research Triangle Park,
40、 Schaeffer VH, Bhoosham B, Chen SB, Sonenthal JS, Hodgson AT. Characterization of volatile organic chemical emissions from carpet cushions. J. Air & Waste Manage Assoc. 1996; 46:813-20.
41、 .Seifert, B., and Schmahl, H. , Quantification of sorption effects for selected organic substances present in indoor air, Proceeding of indoor Air 87, Berlin, Institute of Water, Soil and Air Hygiene, 1989, Vol. 1, , pp. 252-256.
42、 Seifert, B., Mailahn, W., Schultz, C. and Ullrich, D.; Seasonal variation of concentration of Colatile Organic Compounds in Selected German Homes, Environment international, 15, 1989,397-408.
43、 Sheldon L S., et al.; Indoor Air Quality in Public Building, vol 1.1: Project Summy, Washington, D.C. ; U.S. EPA. Publication ,1988, no. EPA, 600, S6-88 , 009a.
44、 S. K. Brown, Chamber Assessment of Formaldehyde and VOC Emissions from Wood-Based Panels. Indoor Air .,1999.,9, 209-215.
45、 Sterling DA, "Volatile organic compounds in indoor air: an overview of sources, concentrations and health effects," In: Gammage RB, Kaye SV, eds. Indoor air and human health. Chelsea, MI: Lewis Publishers, 1985: 387-402
46、 Smith J, Maita K, Sleight S, Hook J. Effect of sex hormone status on chloroform nephrotoxicity and renal mixed function oxidases in mice. Toxicology 1984; 62:358-68.
47、 Tate N, "The sick building syndrome," New Horizon Press, U.S.A. .,1994, pp: 77-92,.
48、 T. M. Monticello, J. A. Swenberg, E. A. Gross, J. R. Leininger, J. S. Kimbell, S. Seilkop, T.B. Starr, J. E. Gibson, K. T. Morgan, Correlation of Regional and nonlinear formaldehyde-indeced Nasal Cancer with Proliferating Population of Cells, Cancer Res. 1996,56, 1012-1022.
49、 U.S. Environmental Protection Agency's Integrated Risk Information System (IRIS) on Benzene (71-43-2). Available from: http://www.epa.gov/ngispgm3/iris on the Substance File List as of March 15, 2000
50、 Virgil J. Knonopinski , Seasonal formaldehyde concentrations in an office building, Am. Ind. Assoc. J., 1985, 46(2), 65-68.
51、 Welch LS. Orhanic solvents. In: Paul M,ed. Occupation and Environmental Reproductive Hazards: A Guide for Clinicians. Baltimore: Williams & Wilkins, 1993.
52、 Weschler CJ, Shields HC, Rainer D, "Concentrations of volatile organic compounds at a building with health and comfort complaints," Am. Ind. Hyg. Assoc. J. , 1990, 51 (5): 261-268.
53、 Wold Health Organization., “Air Quality Guidelines for Europe”, WHO Regional Publications, European Series. , 1988, No.31.
54、 Wolkoff, P., Clausen, P., Nielsen, P. A., The Danish Twin Apartment Study, Part 1: Formaldehyde and Long-Term VOC Measurements, Indoor Air, 1991,1, 478-490.
55、 Wolkoff, P., Volatie organic compounds – sources, measurements, emission, and the impact on indoor air quality, Indoor Air,1995, Suppl. 3, 9 –73
56、 Wolkoff, P., Clausen, P., Nielsen, P. A., A new approach for indoor climate labeling of building materials- emission testing, modeling, and comfort evaluation. Atmospheric Environment .,1996 ,30, 2670-2689.
57、 Zhang, J. S., Wang, J. M., Shaw, C. Y., A Theoretical Examination of a Simplified procedure for data analysis in small chamber testing of material emissions. Internal Report No. IRC-IR-733,. 1997, National Research Council, Canada.
58、 蘇慧貞、江哲銘、李俊璋, “室內空氣品質標準於不同建築物之試行評估級管制策略研究”,2000.
59、 劉正宇,” 木質建材之膠合、塗裝與游離甲醛揮散問題”,木質材料應用在建築內裝之居住性研討會論文集,1989。
60、 魏道駿,” 台北市傢具消費者購買行為研究”,台灣大學森林學研究所碩士論文,1993
61、 王湘卿,“簡介病態建築物症候群”,環保科技通訊,第6卷第6期(民國83年5月)。
62、 黃蒨芸、曾鵬樟,”裝潢建材對室內空氣品質影響實例與改善方法探討”,1998,室內空氣潔淨省能技術研討會論文集。
63、 何明錦、江哲銘,”建築室內建材揮發性有機化合物衰減總表之研究”,內政部建築研究所,2000。
64、 張志成,”建築室內逸散物質檢測分析研究(一)建築物室內環境揮發性有機物檢測實驗室建置”,內政部建築研究所,1999。
65、 江哲銘等,”建築室內環境保健控制綜合指標之研究”,內政部建築研究所,1999。
66、 江哲銘、李俊璋,”室內建材有機逸散物質檢測標準試驗方法及程序之研究”,內政部建築研究所,2001。
67、 李慧梅,”室內揮發性有機物污染源排放因子之研究”,2000。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2005-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2007-07-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw