進階搜尋


 
系統識別號 U0026-0812200910202537
論文名稱(中文) 噴流火焰與水平壁面相互作用之研究
論文名稱(英文) A Study of Mutual Interaction of a Jet Flame and Horizontal Wall
校院名稱 成功大學
系所名稱(中) 航空太空工程學系碩博士班
系所名稱(英) Department of Aeronautics & Astronautics
學年度 90
學期 2
出版年 91
研究生(中文) 李約亨
研究生(英文) Yuen-Heng Lee
電子信箱 mulder@mail.iaa.ncku.edu.tw
學號 p4689406
學位類別 碩士
語文別 中文
論文頁數 70頁
口試委員 口試委員-湯敬民
口試委員-鄭藏勝
指導教授-趙怡欽
中文關鍵字 噴流火焰  水平壁面  浮力渦流 
英文關鍵字 vortex  horizontal wall  Jet flame 
學科別分類
中文摘要   以火焰作為熱源加熱係目前使用最廣泛的熱源取得的方法,然而使用火焰加熱時,火焰與壁面的關係相形重要,由於火焰與受熱壁面之間的相互作用相當複雜,本文主要以實驗的方法探討噴流部分預混火焰與絕熱水平壁面之間的相互作用。研究重點在於絕熱壁面邊界與火焰之距離對火焰結構、火焰溫度分布、火焰周邊流場分布與火焰污染生成的影響。
  在空氣動力方面,利用Shadowgraph視流法與白蠟油視流法(Flow visualization)來觀察火焰形狀與結構以及外圍渦流之現象,並計算外圍浮力渦流的移動路徑與移動速度以解釋其演變(evolution)過程;在溫度場方面,利用R-type熱電偶量測火焰之溫度分布,並設計不同之壁面條件,以觀察熱傳所造成之效應,此外,在火焰成分方面,在不同邊界條件下利用PLIF量測火焰中的OH基濃度分布,與使用氣體分析儀量氣體污染量以觀察對應的物理現象。
  結果發現火焰結構受水平壁面距離而產生明顯變化,主要由於火焰外圍浮力渦流受到水平壁面影響而改變火焰結構,簡言之,壁面對火焰結構所產生的物理變化有火焰突起(flame bulge)、火焰彎曲與火焰跳動。當壁面接近火焰時,火焰突起形狀由似三角形變成四方形且面積變大;在邊界條件近似火焰長度時,火焰頂端有彎曲發生,甚是有火焰跳動的現象。火焰平均溫度分布與水平壁面的位置有關,當壁面靠近後火焰平均溫度逐漸升高,且火焰高溫區有上移的趨勢。在OH基濃度分布方面,隨壁面的靠近OH基分布也有增加的趨勢,與溫度分布不謀而合。在污染方面來說,NO污染量沒有明顯的變化而CO污染量在壁面靠近後有增加的趨勢。總言之,壁面效應對火焰的基本物理現象有顯著的影響,亦是研究基礎火焰的一門重要課題。
英文摘要   Taking flame for heating source is the most widely way to obtain thermal energy. However, the relationship between the wall and flame play an important role while using the heating-flame. The mutual interaction between the flame and the heated surface is too complicated to explore in details. The effects of interaction, in terms of the separation distance between the jet flame and the horizontal wall, on the flame structure, the temperature distribution, the aerodynamics of the hot flow and the pollution formation are investigated.
  The shadowgraph visualization and flame visualization technique are employed to observe the fame and the outer buoyant vortex structures. Therefore, calculations for the displacement and velocity of vortex are to explain the evolution of the one. For temperature gradient, we use the R-type thermocouple for temperature and observe the effect of the heat translation. Besides, for flame components, we use the technique of LIPF to measure the concentration of OH radical and use the gas analyzer for pollution concentration.
  The results showed that when the horizontal wall is moved toward the flame, the variation of the flame structure could be observed in evidence. It is due to the outer buoyant vortices affected by horizontal wall and to vary flame structure. To make short of the matter, the effect of horizontal wall vary the flame structure, including variation of flame bulge and flame winding as wall as flame flutter. When the wall is getting close to flame, the flame bulge change from triangle-form to tetragon and get bigger in area of the flame. When the distance between wall and flame is close to the length of the flame, the flame tip has wind and flutter phenomenon. When the distance between the wall and flame is reduced, the distribution of the flame temperature is increased and the maximum temperature zone trend in the direction of the top wall. For OH radical distribution, it is dependent on the distance between the wall and flame. To shorten the distance is to increase the concentration of the OH radical. It is similar to the temperature distribution. For pollution opinion, the NOx emission has no obvious change, and CO emission is increase as the horizontal wall moves toward the flame. To sum up, the wall existence has an apparent variation of fundamental physical phenomenon to flame. It is an essential course to research the basis combustion.
論文目次 第一章 緒論 1
第二章 文獻探討與研究動機 3
2-1 研究動機 3
2-2 文獻探討 5
2-3 研究目標 7
第三章 實驗設備與量測原理 9
3-1 實驗設備 9
3-1-1 燃料與空氣之供應 9
3-1-2 噴嘴與邊界條件 9
3-2 實驗設備及其原理 9
3-2-1 煙霧產生器 8
3-2-2 雷射系統 10
3-2-3 影像處理系統 10
3-2-4 數據擷取系統 10
3-2-5 Shadowgraph密度量測系統 11
3-2-6 視流法觀察系統 12
3-2-7 溫度量測系統 12
3-2-8雷射誘發預分解螢光(laser induced predissocative fluorescence, LIPF)系統 14
3-2-9 污染量測系統 15
第四章 實驗結果與討論 16
4-1 火焰結構觀察 16
4-1-1 火焰定性觀察分析 16
4-1-2 火焰視流觀察分析 17
4-1-3 外圍浮力渦流分析 23
4-2 溫度場之量測 26
4-3 火焰頻率之量測 28
4-4 LIPF量測-[OH]基之濃度分布 29
4-5 污染物 30
4-6 綜合討論 31
第五章 結論與未來工作 34
5-1實驗結論 34
5-2未來工作 36
參考文獻 38
圖 42
表 69
參考文獻 參考文獻
[1] 曾照暉, “共振聲波激擾對分歧火焰的穩定特性與污染生成之影響,” 國立成功大學航空太空工程研究所碩士論文,1996.
[2] 賴祐炫, “瓦斯燃燒爐高效率低污染之最佳爐面距離之研究,”大專生參與專題研究計畫成果報告,1997.
[3] “瓦斯燃燒最佳化(1)-不同加熱間距下火焰溫度場變化實驗研究,”國科會大專生專題研究計劃報告,計劃編號NSC84-2815-C006-01-036E
[4] “瓦斯燃燒最佳化(2)-不同加熱間距下火焰濃度場變化實驗研究,”國科會大專生專題研究計劃報告,計劃編號NSC84-2815-C006-01-037E
[5] “瓦斯燃燒最佳化(3)-不同加熱間距下加熱效率變化實驗研究,”國科會大專生專題研究計劃報告,計劃編號NSC85-2815-0168-01-004E
[6] Escudié D., Richard G., “Experimental Study of a Premixed Interacting with a Wall,” Proceeding of the 2nd International Symposium on Turbulence, Heat and Mass Transfer Delft, The Netherlands, pp. 651-663, June 9-12, 1997.
[7] 趙怡欽, “預混與部分預混火焰與壁面相互作用之基礎研究,”國科會研究計劃,1999.
[8] L. D. Chen and J. P. Seaba, “Buoyant Diffusion Flames,” Twenty-Second Symposium (International) on Combustion/The Combustion Institute, pp. 677-684, 1988.
[9] J. Buckmaster, “The Infinite Candle and Its Stability – a Paradigm For Flickering Diffusion Flames,” Twenty-first Symposium (International) on Combustion/The Combustion Institute, pp.1829-1836, 1986.
[10] I. Kimura, “Stability of Laminar-jet Flames,” Tenth Symposium (International) on Combustion/The Combustion Institute, pp.1295-1300, 1965.
[11] H. Blasius, “Grenzschichten in Flüsigkeiten mit kleiner Reibung,” Z. Math. Phys. vol. 56, pp. 1-37, 1908.
[12] K. Heimenz, “Die Grenzschicht an einem in den gleichf migen Fl sigkeitsstrom eingetauchten geraden Kreiszylinder,” Dingler’s Polytech. J., vol. 326, pp. 321-324, 1911.
[13] D. H. Lee, Y. S. Chung, and D. S. Kim, “Turbulent flow and heat transfer measurement on a curved surface with a fully developed round impinging jet,” Int. J. Heat and Fluid Flow, vol. 18, pp. 160-169, 1997.
[14] R. A. Strehlow, ‘The Concept of Flame Stretch,’ Combustion And Flame, vol. 31, pp. 209-211,1978.
[15] C. K. Law, “Dynamics of Stretched Flames,” 22nd Symposium (International) on Combustion/The Combustion Institute, pp. 1381-1402, 1988.
[16] M. Matalon, “On Flame Stretch,” Combustion Science and Technology, vol. 31, pp. 169-181, 1983.
[17] C. K. Law, S. Ishizuka, and M. Mizomoto, ‘Lean-limit Extinction of Propane/air Mixtures in the Stagnation-point Flow,’ 18th Symposium on Combustion, pp. 1791~1798, 1981.
[18] J.M.C. Mendes-Lopes and H. Daneshyar, “Influence of Strain Fields on Flame Propagation,” Combustion and Flame, vol. 60, pp. 29-48, 1985.
[19] H. Daneshyar and J.M.C. Mendes-Lopes, “Effect of Strain Fields on Burning Velocity,” 19th Symposium (International) on Combustion/The Combustion Institute, pp. 413-421, 1982.
[20] J.J.E. Anderson and E.F. Stresino, “Heat Transfer From Flames Impinging on Flat and Cylindrical Surfaces”, J. of Heat Transfer, pp. 49-54, 1963.
[21] J.H. Lu, O. Ezekoye, R. Greif, and R.F. Sawyer, “Unsteady Heat Transfer During Side Wall Quenching of a Laminar Flame”, 23rd Symposium (International) on Combustion/The Combustion Institute, pp. 441-446, 1990.
[22] O. Ezekoye, R. Greif, and R.F. Sawyer, “Increased Surface temperature Effects on Wall Heat Transfer During Unsteady Flame Quenching”, 24th Symposium (International) on Combustion/The Combustion Institute, pp. 1465-1472, 1992.
[23] Y.C. Chao and C.Y. Wu, “A Study of the Interaction Between a Jet Flame and a Lateral Wall” Combustion Science and Technology, vol. 158, pp. 93-113, 2000.
[24] R.J. Goldstein, “Optical Systems for Flow Measurement: Shadowgraph, Schlieren, and Interferometric Techniques” in Fluid Mechanics Measurement (R.J. Goldstein ed.), Taylor & Francis, Washington D.C., pp. 377~P397, 1983.
[25] Y.C. Chao, and W.F. Chou, “SIMPLER-Based procedure for Numerical simulation of Dynamic Vortical Characteristics of Some Turbulent Flows”, Numerical Heat Transfer, Part B: Fundamental, 1998.
[26] 周文復 “噴流與噴流火焰的直接數值模擬”,國立成功大學航空太空研究所博士論文,中華民國85年6月,1996。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2002-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2002-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw