進階搜尋


 
系統識別號 U0026-0812200910194398
論文名稱(中文) 供應鏈動態行為模式分析
論文名稱(英文) An approach to analyzing and modeling decision behavior in supply chain
校院名稱 成功大學
系所名稱(中) 資訊管理研究所
系所名稱(英) Institute of Information Management
學年度 90
學期 2
出版年 91
研究生(中文) 陳宗聲
研究生(英文) Tsung-Sheng Chen
電子信箱 chfr@ms10.hinet.net
學號 r7689110
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 口試委員-孫永年
口試委員-利德江
指導教授-吳植森
中文關鍵字 資料採礦  決策樹  啤酒賽局 
英文關鍵字 beer game  decision tree  data mining 
學科別分類
中文摘要 個人或企業都處在資料過多但資訊過少的情境中,如何在眾多的資料中擷取可供決策出有用的資訊顯得非常重要。將資料轉換成資訊的方式有很多,資料採礦(Data Mining)對於從大量資料中擷取出可供利用的資訊提供了有效率的解決方式。
真實世界裡的產業活動行為可經由模擬方式來進行研究。模擬為一種有效而可行之分析方法。本研究透過供應鏈模擬程式-啤酒賽局(Beer Game),對單一供應鏈體系進行模擬,取得決策行為資料。再以Data Mining方法中的決策樹(Decision Tree),對資料進行分析,產生有用之管理資訊,用以分析Beer Game供應鏈決策行為。本研究也探討不同資訊淬取方式所得到的決策樹進行分析比較其有效性。本研究可提供決策者結構化之決策資訊,可提高決策品質,藉以改善存在於供應鏈中的長鞭效應,降低整個供應鏈的成本。
英文摘要 Both individuals and enterprises are all in a data rich and information explosion environment. There are many methods can transform data into information. Data mining is one of the most effective ways in capturing useful information from a huge amount of data.
The behavior of business activities can be analyzed through simulation. Simulation has been proven an effective analysis tool. In this study, we capture data of decision behavior in a supply chain by using a famous simulation program, beer game, which is developed in MIT. The gated data was transformed into decision knowledge. Decision knowledge was extracted and represented in decision trees through data mining techniques. Several trees were induced by different schemes of data arrangement. The performs of decision based on distinct decision trees are compared in terms of error rates. The study chows that knowledge generated directly from transaction data can be used to import quality of decision and hence reduce bullwhip effect in supply chain.
論文目次 目錄
摘要.................................................................. Ⅰ
誌謝.................................................................. Ⅱ
目錄.................................................................. Ⅲ
表目錄................................................................ Ⅴ
圖目錄................................................................ Ⅵ
第一章緒論............................................................ 1
第一節研究動機.................................................... 1
第二節研究目的.................................................... 2
第三節研究流程.................................................... 3
第四節研究範圍與限制.............................................. 4
第二章文獻探討........................................................ 5
第一節供應鏈管理.................................................. 5
2.1.1 供應鏈管理相關重要問題................................... 5
2.1.2 供應鏈的存貨管理......................................... 8
2.1.3 長鞭效應................................................. 9
第二節啤酒賽局................................................... 14
2.2.1 啤酒賽局之介紹.......................................... 14
2.2.2 啤酒賽局與供應鏈管理之研究.............................. 18
第三節資料採礦................................................... 20
2.3.1 資料採礦................................................ 20
2.3.2 常用資料採礦技術介紹.................................... 21
2.3.3 建立決策樹.............................................. 24
第三章研究方法....................................................... 28
第一節建構流程................................................... 28
第二節資料收集................................................... 30
3.2.1 情境選擇................................................ 30
3.2.2 資料項目說明............................................ 32
第三節決策樹..................................................... 38
3.3.1 使用XpertRule Miner 建構決策樹............................ 38
第四章實驗分析....................................................... 40
第一節前置時間對訂單之影響....................................... 40
4.1.1 當前置時間狀態為一星期時................................ 40
4.1.2 當前置時間狀態為二星期時................................ 43
第二節存貨政策對訂單之影響....................................... 47
4.2.1 當存貨政策為s-S 時....................................... 47
4.2.2 當存貨政策為Order to S 時................................. 50
IV
4.2.3 當存貨政策為Updated S 時................................. 52
4.2.4 當存貨政策為Echelon 時................................... 55
第三節不同資料組產生之決策樹比較................................. 60
4.3.1 使用蒙地卡羅模擬法產生之決策樹.......................... 60
4.3.2 各種決策樹錯誤率之比較.................................. 61
4.3.3 使用決策樹進行啤酒模擬賽局.............................. 63
第四節結語....................................................... 65
第五章結論與建議..................................................... 67
第一節結論....................................................... 67
第二節建議....................................................... 68
參考文獻.............................................................. 69
中文部份.............................................................. 69
英文部份.............................................................. 69
參考文獻 中文部份
Berry, M. J. and Linoff, G. S. 著/ 彭文正 譯,「Data Mining資料採礦:顧客關係管理暨電子行銷之應用」,維科出版社,民國90年。
王立志,「系統化運籌與供應鏈管理」,滄海書局,民國88年。
蘇木春,張孝德,「機器學習:類神經網路、模糊系統以及基因演算法則」,全華科技,民國88年。
英文部份
Chen, F., “Decentralized supply chains subject to information delays,” Management Science, 45, 1076-1090, 1999.
Chen, F. and Samroengraja, R., “The stationary beer game,” Production and Operations Management, 9, 19-30, 2000.
Ford, D. N., “System dynamics as a strategy for learning to learn,” Learning for the 21st Century Conference, Andersen Worldwide Center for Professional Education, St. Charles, Illinois, 1998.
Goodwin, J. S. and Franklin, S. G., “The beer distribution game,” Journal of Management Development, 13, 7-15, 1994.
Johnson, M. E. and Pyke, D. F., Supply Chain Management, Research Report, School of Business, Dartmouth College, 1999.
Kazaz, B. and Moskowitz, H., “An active learning exercise: the match distribution game,” Research Report, School of Business, Loyola University, Chicago, 1998.
Kimbrough, S. O., Wu, D. J. and Zhong, F., “Computers play the beer game: can artificial agents manage supply chains?,” IEEE Int Conf On System Sciences, 34, 1-10, 2001.
Lee, H. and Wang, S., “Decentralized multi echelon supply chains: incentives and information,” Management Science, 45, 633-639, 1999.
Lee, H. L., Padmanabhan, V. and Wang, S., “Information distortion in a supply chain: the bullwhip effect,” Management Science, 43, 546-558, 1997.
Machacha, L. L. and Bhattacharya, P., “A fuzzy logic based approach to project selection,” IEEE Transactions on Engineering Management, 47, 65-73, 2000.
Machuca, J. A. and Barajas, R. P., “A computerized network version of the beer game via the internet,” System Dynamics Review, 13, 323-340, 1997.
Metters, R., “Quantifying the bullwhip effect in supply chains,” Journal of Operations Management, 15, 89-100, 1997.
Sikora, R. and Shaw, M. J., “A multi agent framework for the coordination and integration of information systems,” Management Science, 44, S65-S78, 1998.
Simchi-Levi, D., Kaminsky, P. and Simchi-Levi, E., Designing And Managing The Supply Chain, McGraw-Hill International Edition., Singapore, 2000.
Sterman, J. D., “Modeling managerial behavior: misperceptions of feedback in a dynamic decision making experiment,” Management Sciences, 35, 321-339, 1989.
Witten, I. H. and Frank, E., Data Mining, Morgan Kaufmann Publishers., San Francisco, 2000.
XpertRule Miner, Attar Software Limited, Lancashire, UK, 1999.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2002-07-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2002-07-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw