進階搜尋


 
系統識別號 U0026-0812200910192233
論文名稱(中文) 微流體系統整合光學檢測機構於生醫檢測之應用
論文名稱(英文) Microfluidic Systems Integrated with Optical Waveguides for Bio-analytical Applications
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 90
學期 2
出版年 91
研究生(中文) 林哲信
研究生(英文) Che-Hsin Lin
學號 p8885104
學位類別 博士
語文別 英文
論文頁數 79頁
口試委員 口試委員-蕭飛賓
召集委員-李世光
口試委員-許博淵
口試委員-張憲彰
口試委員-曾世昌
口試委員-朱銘祥
指導教授-李國賓
指導教授-張冠諒
中文關鍵字 光纖  生物晶片  細胞計數器  毛細管電泳  微機電  微流體 
英文關鍵字 microfluidic  MEMS  optical waveguide  flow cytometer  SU-8  capillary electrophoresis 
學科別分類
中文摘要 隨著微機電製程技術的發展,利用該技術所製造出之各式微小元件,已逐漸應用於各種醫療領域上,其中生物檢測便是其一。傳統上微機電加工所製作之微型元件多以矽晶片為基材,利用矽晶片加工雖可製作出精確度極高之元件,但其製程複雜、昂貴,且矽之生物相容性不佳,長期而言具有生物毒性,加上材料不透光,不利於檢驗時之觀察與訊號量測。然而玻璃以及高分子材料均具有良好之透光性、生物相容性、抗化學腐蝕以及機械強度,且其製程方法簡單便宜,非常適合各種生物醫學及化學檢測。
本研究首先利用微機電製程技術,發展一快速可靠之製程,在成本低廉之鈉玻璃基材中,製作微流體生物晶片。研究中採行許多創新之製程方法,以簡單之正光阻做為玻璃濕式蝕刻之罩幕,並利用化學方法,將蝕刻過程所產生的沈澱物去除,而得到表面平整度良好之蝕刻結構。在玻璃接合方面,本研究發展出一快速之熱熔融接合方式,使得全部製程得以在十小時之內完成。此乃文獻報導過,最快速、簡單的一套玻璃製程。但由於玻璃屬非晶系材料,其蝕刻結構之深寬比不大於0.5,而限制其部份用途。
為彌補上述缺失,本研究並利用SU-8負型光阻,發展一套可製作高深寬比結構之製程,並可輕易調整其結構深度,以符合探討三維效應之需求。由於微流體晶片之製造多屬凹槽結構,而利用傳統製程方式所製作出之元件,容易發生結構破裂及管道塌陷之問題,無法滿足製作深度達1 mm以上之微溝槽結構。因此本研究發展出「定量注射」方式塗佈光阻,不僅可輕易製作出高度達1.5 mm以上之微結構,並大幅減少光阻之使用量。此外,研究中提出一光罩設計之新概念,並成功解決以SU-8光阻製作微流體元件時,所發生之結構破裂以及管道崩塌之問題。
除了新製程技術之開發外,本研究更利用所發展之技術,設計並製作出光纖機構整合之微流體生物檢測晶片,包括微流體細胞計數器、光纖整合之毛細管電泳晶片等。該設計利用一創新之材料組合,以SU-8負型光阻及有機系列之旋轉塗佈玻璃(SOG)做為一光波導結構,將微流體元件以及光學偵測元件整合於同一晶片上。由於光波導結構採用SU-8/SOG雙層結構,並直接導入蝕刻過之光纖,因此可以解決傳統以表面微細加工技術所製造之光波導其結構厚度不足,以及光耦合困難之問題。且由於光波導結構之位置,乃由標準之光刻程序所定義,因此不需複雜之光學對位系統以及顯微鏡等大型光學設備,可大幅縮小檢測系統之體積,製作成可攜式的檢測設備,並降低檢測成本。
本研究成功利用所發展之製程,將光波導檢測機構整合於微流體晶片中。並透過二維微流體細胞計數器,在不將檢測樣品進行螢光標定之情況下,以本檢測機構對微粒子以及全血進行測試,並獲致良好結果。此外,研究中並將相同之概念應用於毛細管晶片電泳,成功地製作光纖檢測機構整合之電泳晶片,可分離並檢測出兩種螢光染劑之混和物,以及FITC螢光標定之多胜肽(polypeptide)。
本論文利用微機電製程技術,發展出可以在玻璃及高分子基材上,製作各種深寬比微流體元件之快速、可靠製程。並成功開發出光纖機構整合之微型生醫檢測晶片,應用於細胞計數、毛細管電泳分析等檢測,相信此研究對於生醫檢測系統之微小化,以及實踐「晶片實驗室」之理想,可以帶來具前瞻及突破性之貢獻。

英文摘要 The MEMS (Micro-Electro-Mechanical-Systems) technologies have been widely employed for biomedical analysis in recent years. The miniaturized device fabricated by such technologies has many benefits such as lower sample consumption, higher resolution, and faster detection speed, etc. During the MEMS manufacturing process, silicon has been extensively used as the primary material. However, it is not suitable for biomedical applications because of its long-term bio-toxicity and lack of opacity, which cause adverse effects and impair the analytical accuracy in a biological system. Therefore, there is an emerging need to develop fabrication techniques using proper materials for bio-analysis applications.
In this study, soda-lime glass and SU-8 negative photoresist have been examined for the fabrication of microfluidic systems, one of MEMS technologies. Both materials are cost effective, and exhibit high transparency, biocompatibility, chemical resistance, and mechanical strength, which serve as excellent alternatives for the fabrication of the bio-analytical devices. The aspect ratio of etched structures on soda-lime glass always less than 0.5 due to its isotropic etching characteristics. On the other hand, SU-8 is suitable for fabrication of microfluidic devices with high aspect ratios. With appropriate combination of the two materials, microfluidic devices can be designed and fabricated to yield desired characteristics.
This study has successfully developed a fast and reliable process for fabrication of microfluidic systems in soda-lime glass using a modified baking procedure, a precipitates removing technique and a rapid thermal bonding procedure. The time required for the fabrication in the glass substrates is less than 10 hours, the fastest process ever reported in the literature. A simple process for fabricating ultra-high aspect ratio microstructures utilizing SU-8 photoresist was also developed. The constant-volume injection method is employed to coat SU-8 film up to 1.5 mm in a single coating without a conventional spin-coater. The modified baking process reduces the processing time and produces a better structure definition. Furthermore, an innovative photomask design for fabrication of ultradeep trenches is reported, which prevents the structures from cracking and distorting during developing and hard-baking processes.
The integration of build-in optical sensing mechanisms in the design and fabrications of microfluidic devices has also been achieved in this study. In this effort, the SU-8/SOG double layers and etched optic fibers are used as optical waveguides for optical detection, eliminating the complicated optical alignment system required. This approach produces a low-cost and miniaturized biosensor integrated with optical waveguides. Two novel micro devices with build-in optical sensing device are proposed, including a micro flow cytometer and a microchip electrophoresis system. Results show that the integrated optical waveguides can detect microparticles and diluted human whole blood without fluorescent labeling using the developed flow cytometer. The proposed micro capillary electrophoresis can successfully separate and detect the fluorescence mixtures and dye-labeled polypeptide.
Two fast and reliable processes have been successfully developed in this study to fabricate microfluidic devices using micro system technologies. The concept of integration of optical sensing mechanism in a microchip has also been realized an implemented. Two microfluidic devices “micro flow cytometer” and “ miniaturized capillary electrophoresis” are used to demonstrate the proposed concept. Results show that the proposed devices can detect the optical signal in the microchip without using of delicate optical alignment equipments. The results of this study will make substantial impacts and contribution to miniaturization of a bio-analytical system.

論文目次 Abstract I
中文摘要 III
Acknowledgement V
Table of Contents VI
Nomenclature VIII
List of table X
List of Figures XI
Chapter 1: 1
INTRODUCTION
1.1 Impacts of MEMS technologies to bio-analytical applications 1
1.2 Materials used in Bio-MEMS applications 2
1.3 Integration of optical detection system in microfluidic devices 3
1.4 Motivation and Objectives 4
1.5 Thesis organization 6
Chapter 2: 9
DEVELOPMENT OF FABRICATING MICROFLUIDIC SYSTEMS IN SODA-LIME GLASS
2.1 Introduction 9
2.2 Materials 12
2.3 Method 12
2.4 Results and discussion 14
2.5 Applications 16
Chapter 3: 18
FABRICATION OF HIGH ASPECT RATIO MICROFLUIDIC DEVICES UTILIZING SU-8 NEGATIVE TONE PHOTORESIST
3.1 Introduction 18
3.2 Materials 21
3.3 Method 22
3.4 Results and discussions 23
Chapter 4: 28
MICRO FLOW CYTOMETERS WITH BURIED SU-8/SOG OPTICAL WAVEGUIDES
4.1 Introduction 28
4.2 Principle and design 29
4.3 Fabrication 30
4.4 Results and discussions 31
4.5 Experimental section 33
Chapter 5: 54
MICRO CAPILLARY ELECTROPHORESIS CHIPS INTEGRATED WITH BURIED SU-8/SOG OPTICAL WAVEGUIDES FOR BIOMEIDICAL APPLICATIONS
5.1 Introduction 35
5.2 Fabrication 36
5.3 Experimental section 37
Chapter 6: 41
CONCLUSIONS
6.1 Overview of the dissertation 41
6.2 Future works 44
REFERENCES 46
LIST OF TABLE 54
LIST OF FIGURES 55
參考文獻 1. Manz A., Harrison D. J., Verpoorte E. M. J., Fettinger J. C., Paulus A., Lűdi H., Widmer H. M., “Planar chips technology for miniaturization and integration of separation techniques into monitoringsystems - capillary electrophoresis on a chip” J. Chromatogr. 593 (1992) 253–258
2. Manz A., Graber N., Widmer H. M., “Miniaturization total chemical-analysis systems - a novel concept for chemical sensing” Sens. Actuators B 1 (1990) 244–248
3. Effenhauser C. S., Bruin G. J. M., Paulus A., “Integrated chip-based capillary electrophoresis” Electrophoresis 18 (1997) 2203–2213
4. Kopp M. U., Crabtree H. J., Manz A., “Developments in technology and applications of microsystems “ Curr. Opin. Chem. Biol. 1 (1997) 410–419
5. Colyer C. L., Tang T., Chiem N., Harrison D. J., “Clinical potential of microchip capillary electrophoresis systems” Electrophoresis 18 (1997) 1733–1741
6. Schult K., Katerkamp A., Trau D., Grawe F., Cammann K., Meusel M., “Disposable optical sensor chip for medical diagnostics: New ways in bioanalysis” Anal. Chem. 71 (1999) 5430–5435
7. Wang J, Rivas G, Cai X, Palecek E, Nielsen P, Shiraishi H, Dontha N, Luo D, Parrado C, Chicharro M, Farias PAM, Valera FS, Grant DH, Ozsoz M, Flair M. N., “Disposable DNA electrochemical biosensors for environmental monitoring” Anal. Chim. Acta. 347 (1997) 1–8
8. Chen S. H., Gallo J. M., “Use of capillary electrophoresis methods to characterize the pharmacokinetics of antisense drugs” Electrophoresis 19 (1998) 2861–2869
9. Jacobson S. C., Hergenröder R., Koutny L. B. and Ramsey J. M., “Open-channel electrochromatography on a microchip” Anal. Chem. 66, (1994) 2369-2373.
10. Zhang J., Tan K. L., Hong G. D., Yang L. J., Gong H., “Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS” J. Micromech. Microeng. 11, (2001) 20-26
11. Tay F. E. H., van Kan J. A., Watt F. and Choong W. O., “A novel micro-machining method for the fabrication of thick-film SU-8 embedded micro-channels” J. Micromech. Microeng. 11, (2001) 27–32
12. Jackman R. J., Floyd T. M., Ghodssi R., Schmidt M. A. and Jensen K. F, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy” J. Micromech. Microeng. 11, (2001) 263–269
13. Kutter J. P., Mogensen K. B., Friis P., Jorgensen A. M., Pertersen N. J., Telleman P., Hűbner J., “Integration of waveguides for optical detection in microfabricated analytical devices” Proc.of SPIE 4177, (2000) 98-105
14. Mogensen K. B., Petersen N. J., Hűbner J. Kutter J. P., “Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoreisi devices” Elelctrophoressi, 22, (2001) 3930-3938
15. Grewe M., Gross A., Fouckhardt H., “Theoretical and experimental investigations of the optical waveguiding properties of on-chip microfabricated capillaries” Applied Physics B 70, (2000) S839-S847
16. Ladouceur F., “Roughness, inhomogeneity, integrated optics” IEEE J. Lightwave Tech. 15, No. 6, (2000) 1020-1025
17. Harrison D. J., Manz A., Fan Z. H., Lűdi H., and H. M., “Capillary electrophoresis and sampling injection systems integrated on a planar glass chip,“ Anal. Chem. 64, (1992) 1926-1932
18. Seiler K., Harrison D. J. and Manz A., “ Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency,” Anal. Chem. 65, (1993) 1481-1488
19. Effenhauser C. S., Manz A. and Widmer H. M., “Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights,” Anal. Chem. 65, (1993) 2637-2642
20. Fan Z. H. and Harrison D. J., “Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections, “ Anal. Chem. 66, (1994) 177-184
21. Jacobson S. C., Hergenrőder R., Koutny K. B. and Ramsey J. M., “High-speed separators on a microchip,” Anal. Chem. 66, (1994) 1114-1118
22. Effenhauser C. S., Manz A. and Widmer H. M., “Manipulation of sample fabrications on a capillary electrophoresis chip,” Anal. Chem. 67, (1995) 2284-2287
23. Fluri K., Fitzpatrick G., Chiem N. and Harrison D. J., “Integrated capillary electrophoresis devices with an efficient postcolumn reactor in planar quartz and glass chips, “ Anal. Chem. 68, (1996) 4285-4290
24. Jacobson S. C., Koutny L. B., Hergenrőder R., Moore A. W. and Ramsey J. M., “Microchip capillary electrophoresis with an integrated postcolumn reactor,” Anal. Chem.66, (1994) 3472-3476
25. Jacobson S. C., Hergenr¨ oder R., Koutny L. B. and Ramsey J. M., “Open channel electrochromatography on a microchip,” Anal. Chem. 66, (1994) 2369-2373
26. Effenhauser C. S., Paulus A., Manz A. and Widmer H. M., “High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device,” Anal. Chem. 66, (1994) 2949-2953
27. Woolley A. T. and Mathies R. A., “Ultra-high-speed DNA sequencing using capillary electrophoresis chips,” Anal. Chem. 67, (1995) 3676-3680
28. Kricka L. J., Faro I., Heyner S., Garside W. T., Fitzpatrick G., McKinnon G., Ho J. and Wilding P., ”Micromachined analytical device: microchips for semen testing,” J. Pharmaceut. Biomed. 15, (1997) 1443-1447
29. Kovacs G. T. A., “Micromachined Transducers Sourcebook”, New-York: McGraw-Hill Inc. (1998)
30. Woolley A. T. and Mathies R. A., ”Ultra-High-Speed DNA fragment separations using microfabricated capillary array electrophoresis chips,” Proc. Natl. Acad. Sci. 91, (1994) 11348-11352
31. Stjernstrőm M. and Roeraade J., “Method for fabrication of microfluidic system in glass, “ J. Micromech. Microeng. 8, (1998) 33-38
32. Spierings G., “Review: Wet chemical etching of silicate glasses in hydrofluoric acid based solutions, “ J. Mater. Sci. 28, (1993). 6261-6273
33. Delahaye F., Montagne L., Palavit G., Touray J. C. and Baillif P., “Acid dissolution of sodium-calcium metaphosphate glasses,” J. Non-Cryst Solids. 242, (1998) 25-32
34. Spierings G. and Van D., “The dissolution of Na2O-MgO-CaO-SiO2 glass in aqueous HF solutions,” J. Mater. Sci. 22, (1987) 1869-1874
35. Roach D. H. and Copper A. R., “Weakening of soda-lime glass by particle impact during hydrofluoric acid etching,” J. Am. Ceram. Soc. 69 (1986) C-153-5
36. Wang H. Y., Foote R. S., Jacobson S. C., Schneibel J. H. and Ramsey J. M., “Low temperature bonding for microfabrication of chemical analysis devices, “ Sensors Actuators B 45, (1997) 199-207
37. Nakanishi H., Nishimoto T., Nakamura R., Yotsumoto A., Yoshida T. and Shoji S., “Studies on SiO2-SiO2 bonding with hydrofluoric acid: Room temperature and low stress bonding technique for MEMS, “ Sensors Actuators A 79, (2000) 237-244
38. Nakanishi H., Nishimoto T., Kanai M., Saitoh T., Nakamura R., Yoshida T. and Shoji S., “Condition optimization, reliability evaluation of SiO2-SiO2 HF bonding and its application for UV detection micro flow cell,” Sensors Actuators A 83, (2000) 136-141
39. Satoh A., “Water glass bonding,” Sensors Actuators A 72, (1999) 160-168
40. Berthold A., Nicola L., Sarro P. M. and Vellekoop M. J., ” Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers,” Sensors Actuators B 82, (2000) 224-228
41. Lin Y. H., Lee G. B., Li C. W., Huang G. R. and Chen S. H., “Flow-through sampling for electrophoresis-based microfluidic chips using hydrodynamic pumping,” J. of Chromatogra., A 937, (2001) 115-125
42. Zumdahl S. S., Chemistry, 2nd edition, D. C. heath and company, Lexington, Massachusetts, Chap. 11. (1989) 709
43. Menz W., Bacher W., Harmening M. and Michel A., ”The LIGA technique - a novel concept for microstructures and the combination with Si-technology by injection molding” Proc. MEMS’91, IEEE, Nara, Japan, (1991) 69-73
44. Guckel H., Skrobis K. J., Christension T. R., Klein J., Han S., Choi B. and Lovel E. G., ”Fabrication of assembled micromechanical components via deep x-ray lithography” Proc. MEMS’91, IEEE, Nara, Japan, (1991) 74-79
45. Harmening M., Bacher W., Bley P., Kholi A., Kalb H., Kowanz B., Michel A. and Mohr K., ”Molding of three-dimensional microstructures by the LIGA process” Proc. MEMS’92, IEEE, Traveműnde, Germany, (1992) 202-207
46. Shew B. Y., Cheng Y., Lin C. H., Ma W. P., Huang G. J., Kuo C. L., Tseng S. C., Lee D. S. and Chang G. L., ”Manufacturing Process for LIGA Spinnerets Sensors Materials 11, No. 6, (2001) 329-37
47. Lee K. Y., LaBianca N., and Rishton S. A., Zolgharnain S., Gelorme J. D., Shaw J., and Chang T. H. P., ”Micromachining applications of a high resolution ultrathick photoresist” J. Vac. Sci. Technol. B 13(6), (1995) 3012-3016
48. LaBianca N., Gelorme J., Lee K., Sullican E., and Shaw J., “High aspect ratio optical resist chemistry for MEMS applications” Proc. 4th Int. Symp. On Magnetic Materials, Processes, and Devices, The Electrochem. Soc., 95-18, (1995) 386-396
49. Despont M., Lorentz H., Fahrni N., Brugger J., Renaud P. and Vettiger P., “High-Aspect-Ratio, Ultrathick, Negative Near-UV Photoresist for MEMS Applications” Proc. MEMS’97, IEEE, Nagoya, Japan, (1997) 518-22
50. Dellmann L., Roth S., Beuret C., Racine G. A., Lorenz H., Despont M., Renaud P., Vettiger P. and Rooij N. F., “Fabrication Process Of High Aspect Ratio Elastic Structures For Piezoelectric Motor Applications” Proc. Transducer ’97, Chicago, USA, (1997) 641-644
51. Lorenz H., Despont M., Fahrni M., Brugger J., Vettiger P., and Renaud P., “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS” Sensors Actuators A 64, (1998) 33-39
52. Zhang J., Tan K. L., Gong H. Q., “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS)” Polymer Testing 20, (2001) 693–701
53. Tseng F. G., Chuang Y. J., and Lin W. K., “Reduction of Diffraction Effect of UV Exposure on Su-8 Negative Thick Photoresist by Air Gap Elimination” Proc. HARMST 4th workshop on high aspect ratio micro-structure technology, Baden-Baden, Germany, (2001) 73-74
54. Bogdanov A. L. and Peredkov S. S., “Use of SU-8 photoresist for very high aspect ratio x-ray lithography” Microelectronic Engineering 53, (2000) 493-496
55. Chang H. K., Kim Y. K., “UV-LIGA process for high aspect ratio structure using stress barrier and C-shaped etch hole” Sensors Actuators A 84, (2000) 342–350
56. Eyre B., Blosiu J., Wiberg D., “Taguchi Optimization for the Processing of EPON SU-8 Resist” Proc. MEMS’98, IEEE, Heidelberg, Germany, (1998) 218-222
57. Lorenz H., Laudon M., and Renaud P., “Mechanical characterization of a new high-aspect-ratio near UV-photoresist” Microelectronic Engineering 41/42, (1998) 371-374
58. Sampath S. K., Clair L. St, Wu X. T., Ivanov D. V., Wang Q., Ghosh C. and Farmer K. R., “Rapid MEMS Prototyping using SU-8, Wafer Bonding and Deep Reactive Ion Etching” Proc. 14th Biennial University/Government/Industry Microelectronics Symposium, IEEE, (2001) 158-161
59. Shaw M. J., Nawrocki D. J., Hurditch R. J. and Johnson D. W., “Improving the Process Capability of SU-8” Proc. HARMST 4th workshop on high aspect ratio micro-structure technology, Baden-Baden, Germany, (2001) 69-70
60. Data sheet for NATOTM SU-8 negative tone photoresists, Formulations 50 and 100, released by Micor Chem Corp.
61. Shaw J. M., Gelorme J. D., LaBianca N. C., Conley W. E., and Holmes S. J., “Negative photoresists for optical lithography” IBM Journal of Research and Development 41, (1997) 81-94
62. Porter J., Deere D., Hardman M., Edwards C., Pickup R., “Go with the flow – use of flow cytometry in environmental microbiology” FEMS Microbiology Ecology 24 (1997) 93-101
63. Rieseberg M., Kasper C., Reardon K. F., Scheper T., “Flow cytometry in Biotechnology” Appl Microbiol Biotechnol 56 (2001) 350-360
64. Miyake R., Ohki H., Yamazaki I., Yabe R., “A development of micro sheath flow cytometer” Proc. MEMS '91 (1991) 265-170
65. Sobek D., Young A. M., Gray M. L., Senturia S. D., “A microfabricated flow chamber for optical measurement in fluids” Proc. MEMS '93 (1993) 219-224
66. Leistiko O., Jensen P. F., “Integrated bio/chemical Microsystems employing optical detection: a cytometer” Proc. μ–TAS '98 (1998) 291-294
67. Grosse A., Grewe M., Fouckhardt H., “Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices” J. Micromech. Microeng. 11 (2001) 257-262
68. Jin G. H., Harari J., Joannes L., Vilcot J. P., Decoster D., “Numerical Analysis of the Radiation Losses Due to Surface Roughness in Integrated Optics Devices” IEEE Photonics Tech. Lett. 8, No. 9 (1996) 1202-1204
69. Ihlein G., Menges B., Mittler-Neher S., Osaheni J. A., Jenekhe S. A., “Channel waveguides of insoluble conjugated polymers” Optical Materials 4 (1995) 685-689
70. Arscott S., Garet F., Mounaix P., Duvillaret L., Coutaz J.-L., and Lippens D., “Terahertz time-domain spectroscopy of films fabricated from SU-8” Electron. Lett. 35 (1999) 243-244
71. Guerin L., Bossel M., Demierre M., Calmes S., and Renaud P., “Simple and low cost fabrication of embedded microchannels by using a new thick-film photoplastic” Proc. Transducers’ 97, (1997) 1419-1422
72. Lin C. H., Lee G. B., Lin Y. H., Chang G. L., “A Fast Prototyping Process for Fabrication of Microfluidic Systems on Soda-Lime Glass”, J. Micromech. Microeng. 11 (2001) 726-732
73. Webster J. R., Burns M. A., Burke D. T., Mastrangelo C. H., “Monolithic Capillary Electrophoresis Device with Integrated Fluorescence Detecor” Anal. Chem. 73, (2001) 1622-1626
74. Chabinyc M. L., Chiu D. T, McDonald J. C., Stroock A. D., Christian J. F., Karger A. M., Whitesides G. M., “An integrated fluorescence detection system in PDMS for microfluidic applications” Anal. Chem. 73, (2001) 4491-4498
75. Liang Z. H., Chiem N., Ocvirk G., Tand T., Fluri K., Harrison D, J., “Microfabrication of a planar absorbance and fluorescence cell for integrated capillary electrophoresis devices” Anal. Chem. 68, (1996) 1040-14046
76. Ladouceur F., “Roughness, inhomogeneity, integrated optics” IEEE J. Lightwave Tech. 15, No. 6 (2000) 1020-1025
77. Lee G. B., Lin C. H., Chang G. L., “Multi-cell-line Micro Flow Cytometers with Buried SU-8/SOG Optical Waveguides” Proc. 15th IEEE MEMS, (2002) 503-506
78. Hillborg H., Ankner J. F., Gedde U.W., Smith G. D., Yasuda H. K., Wikström K., “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques” Polymer 41, (2000) 6851–6863
79. Laurens P., Ould Bouali M., Meducin F., Sadras B., “Characterization of modifications of polymer surfaces after excimer laser treatments below the ablation threshold” Applied Surface Science 154–155, (2000) 211–216
80. Khorasani M. T., Mirzadeh H., Sammes P. G., “Laser surface modification of polymers to improve biocompatibility: HEMA grafted PDMS, in vitro assay-DIII” Radiation Physics and Chemistry 55, (1999) 685-689
81. Slentz B. E., Penner N. A., Regnier F. E., “Capillary electrochromatography of peptides on ficrofabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization” J. of Chromatogr. A 948, (2002) 225–233

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2002-07-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2002-07-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw