進階搜尋


 
系統識別號 U0026-0810202007231400
論文名稱(中文) 以懸空技術實現無基板可轉移式薄膜之表面電漿元件
論文名稱(英文) Substrateless transferable surface plasmon devices realized by suspended nano-thin film
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 109
學期 1
出版年 109
研究生(中文) 黃奕璁
研究生(英文) I-Tsung Huang
電子信箱 ivan2121262@gmail.com
學號 LA6071069
學位類別 碩士
語文別 中文
論文頁數 67頁
口試委員 指導教授-張博宇
共同指導教授-周昱薰
口試委員-藍宇彬
中文關鍵字 懸空薄膜  氧化鋅奈米線  表面電漿子  奈米雷射 
英文關鍵字 surface plasmon  nanolaser  zinc oxide nanowire  suspended nano-thin film 
學科別分類
中文摘要 半導體雷射的尺寸微小化是近年來光電元件發展的方向,小尺寸元件所擁有的是高速、低損耗、高密度集成的特性。儘管現今的半導體雷射已經能夠精確的製作到次微米波長的大小,但傳統的半導體雷射卻依然會受限於光學繞射極限,為了達到雷射所需要的回饋機制,需要有長度至少半個光波波長的共振腔,這使得傳統半導體始終無法縮小到數個奈米的尺寸。不過近年來已經有團隊使用了表面電漿子的概念來突破繞射極限並製作出奈米雷射,表面電漿子擁有數十奈米的波長,可以取代傳統光波作為傳遞能量的方式,表面電漿奈米雷射的結構為半導體、金屬與絕緣體,三者形成Semiconductor-Insulator-Metal(SIM)結構,以電漿子的共振腔取代以往的光學共振腔可以有效的縮減雷射元件的體積。
表面電漿奈米雷射的實現需要克服高損耗造成閾值上升的問題,金屬薄膜的品質與平整度對於雷射損耗影響甚鉅,基板無法有效散熱也是造成閾值上升的原因。為了解決上述問題,本論文使用氧化鋅奈米線作為增益介質,並且專注於製作奈米懸空薄膜,相較於以往有基板的元件,懸空薄膜除了可以有效改善散熱的問題,對於將來轉移薄膜至其他目標元件更是有巨大的潛力及未來性。在生物醫學上,若能將元件縮小並轉移至微小細胞,期望能更入微的觀測並對其造成影響,在生物領域上也有相當大的發展性。
英文摘要 In this study, we take the surface plasmon nanolaser as the main research target, we used zinc oxide nanowire as the gain medium and spread the nanowires on a 150nm suspended metal film with 5nm alumina as the insulator layer to realize the semiconductor-insulator-metal (SIM) structure. To effectively reduce heat accumulation, we remove the substrate to get a suspended nano-thin film. When the devices are in contact with air, it can reduce the heat by the flowing air, thereby lowering the laser threshold. Through experiments, we have confirmed that suspending the film can effectively reduce the laser threshold (the minimum threshold can be reduced to 10μW) and increase the operating temperature to 90°C.
論文目次 摘要 II
致謝 VI
目錄 VIII
第一章 緒論 1
1-1前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 3
第二章 實驗簡介與原理 5
2-1 實驗簡介 5
2-2 雷射原理 5
2-2-1 受激吸收 6
2-2-2 自發輻射 7
2-2-3 受激輻射 7
2-3 雷射條件 8
2-3-1 激發來源 9
2-3-2 光學共振腔 9
2-3-3 增益介質 11
2-4 半導體雷射 11
2-5 表面電漿子奈米雷射元件 12
2-5-1 表面電漿子原理 12
2-5-2 表面電漿子奈米雷射 15
2-5-3 奈米線表面電漿雷射 20
2-6 氧化鋅簡介 22
2-7 表面電漿子雷射熱效應 24
第三章 實驗方法與步驟 26
3-1 實驗設計與流程 26
3-2 樣品製備流程 27
3-2-1 懸空薄膜基座 27
3-2-2 試片製程 28
3-2-3 薄膜製程 28
3-3 光致發光量測設計與流程 32
3-3-1 光致發光量測設計 32
3-3-2 光致發光量測流程 33
3-4 實驗與量測機台介紹 34
3-4-1 電子束蒸鍍機(E-beam Evaporator) 34
3-4-2 光致發光(photoluminescence)光譜系統 35
3-4-3 掃描式電子顯微鏡 (Scanning Electron Microscope) 35
3-4-4 原子力顯微鏡(Atomic Force Microscope) 36
第四章 實驗結果與討論 38
4-1 不同基板之氧化鋅奈米線表面電漿元件之雷射表現與分析 38
4-1-1 懸空薄膜氧化鋅奈米線表面電漿元件之雷射表現 42
4-1-2 有基板薄膜氧化鋅奈米線表面電漿元件之雷射表現 45
4-1-3 薄膜轉移後的氧化鋅奈米線表面電漿元件之雷射表現 47
4-1-4 不同基板之氧化鋅奈米線表面電漿元件之雷射表現與分析 53
4-2 不同厚度之懸空薄膜氧化鋅奈米線表面電漿元件之雷射表現與分析 55
4-3不同厚度之懸空薄膜氧化鋅奈米線表面電漿元件之雷射表現與分析 58
4-4 懸空薄膜氧化鋅奈米線表面電漿元件在顯微鏡下的結構與樣貌 59
第五章 結論與未來展望 61
5-1結論 61
5-2未來展望 61
參考文獻 63

參考文獻 [1] Ma, Ren Min, Oulton, Rupert F,” Applications of nanolasers,” Nature Nanotechnology, vol.14, pp.12-22, 2019.
[2] Wang, Danqing, Wang, Weijia, Knudson, Michael P., Schatz, George C, Odom, Teri W,” Structural Engineering in Plasmon Nanolasers,” Chemical Reviews, vol.118, pp.2865-2881, 2018.
[3] Deveaud-Pledran, B.,” Polaritronics in view,” Nature, 453(7193), pp.297-298, 2008.
[4] Hill, M. T. and Gather, M. C.” Advances in small lasers,” Nat. Photonics, vol.8, pp.908-918, 2014.
[5] Ozgur, Ümit, Hofstetter, Daniel Morkoç, Hadis,” ZnO devices and applications: A review of current status and future prospects,” Proceedings of the IEEE, vol.98, pp.1255-1268, 2010.
[6] M. Planck, Verhandl.” On the Theory of the Energy Distribution Law of the Normal. Spectrum,” Dtsch. phys. Ges., 2, 237, 1900.
[7] Yang, Ankun, Wang, Danqing, Wang, Weijia Odom, Teri W,” Coherent Light Sources at the Nanoscale,” Annual Review of Physical Chemistry, vol.68, pp.83-99, 2017.
[8] Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X,” Plasmon Lasers at Deep Subwavelength Scale,” Nature, 461, 629–632, 2009.
[9] Ma, R. M.; Oulton, R. F.; Sorger, V. J.; Bartal, G.; Zhang, X. A,” Room-Temperature Sub-Diffraction-Limited Plasmon Laser by Total Internal Reflection,” Nat. Mater, 10,110–113, 2011.
[10] Ding, K.; Ning, C. Z,” Metallic Subwavelength-Cavity Semiconductor Nanolasers,” Light-Sci, 1, e20.2, 2012.
[11] Paul Adrien Maurice Dirac,” The quantum theory of the emission and absorption of radiation,” Royal Society vol. 114, 1927
[12] William L. Barnes, Alain Dereux and Thomas W. Ebbesen.” Surface plasmon subwavelength optic,” Nature, vol.424, pp. 824-830, 2003.
[13] David J. Bergman and Mark I. Stockman.” Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems,” Physical Review Letters, vol. 90, no.4, 027402. 2003.
[14] T. H. Maiman.” Stimulated Optical Radiation in Ruby,” Nature, vol.187, pp.493-494, 1960.
[15] Lu, Yu-Jung,“氮化物半導體電漿子奈米雷射之研究,” 清華大學物理學系學位論文, 2013.
[16] Chou, Y. H.; Chou, B. T.; Chiang, C. K.; Lai, Y. Y.; Yang, C. Y.; Li, H.; Lin, T. R.; Lin, C. C.; Kuo, H. C.; Wang, S. C.; Lu, T. C.” Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano, vol.9, pp.3978−3982. 2015.
[17] Chou, Yu Hsun.; Wu, Yen Mo.; Hong, Kuo Bin.; Chou, Bo Tsun.; Shih, Jheng Hong.; Chung, Yi Cheng.; Chen, Peng Yu.; Lin, Tzy Rong.; Lin, Chien Chung.; Lin, Sheng Di.; Lu, Tien Chang.” High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum,” Nano Letters, vol.16, pp.3179-3186, 2016.
[18] J. Pankove,” Temperature Dependence of Emission Efficiency and Lasing Threshold in Laser Diodes,” IEEE Journal of Quantum Electronics, vol. QE-4, no. 4, 1968.
[19] Gould, R. Gordon.” The LASER, Light Amplification by Stimulated Emission of Radiation”. In Franken, P.A.; Sands R.H. (eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, pp.128, 1959.
[20] Svelto, Orazio.” Principles of Lasers,” 4th ed. (trans. David Hanna), Springer Science+Business Media, LLC, 0-306-45748-2, 1998
[21] Maurice G. A. Bernard.; Georges Duraffourg.” Laser Conditions in Semiconductors,” Basic solid state physics, vol.1, Issue7, pp.699-703, 1961.
[22] Fabry, C; Perot, A,” Theorie et applications d'une nouvelle methode de spectroscopie interferentielle,” Ann. Chim. Phys. 16, 1899
[23] Rayleigh, L.,” CXII. The problem of the whispering gallery,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.20, pp.1001-1004, 1910.
[24] Gizatulin, Azat, Sultanov, Albert Kh.” Application of whispering gallery modes in opticalv,” Proc. SPIE 10774, Optical Technologies in Telecommunications, 2017.
[25] Martin T. Hill, and Malte C. Gather,” Advances in small lasers,” Nature Photonics, vol 8, 2014.
[26] Cun-Zheng Ning,” Semiconductor nanolasers and the size-energy-efficiency challenge: a review,” Advanced Photonics, 1(1), 014002, 2019.
[27] 盧廷昌,王興宗,” 半導體雷射導論,” 五南出版社, 2008.
[28] 楊國輝,黃宏彥,” 雷射原理與量測概論, ” 五南出版社, 2008.
[29] Barnes, William L, Dereux, Alain, Ebbesen, Thomas W,” Surface plasmon subwavelength optics,” Nature, vol.424, pp.824-830, 2003.
[30] Enxu Yao, Jigang Hu, Wei Liu, Weiqiang Xie, Fei Wang, Yonghua Lu, Qiwen Zhan,” Enhanced interaction of Tamm plasmon polaritons based on graphene/DBR/silver structure,” SPIE, vol.11440, 2020.
[31] 邱國斌, 蔡定平,” 金屬表面電漿簡介,” 物理雙月刊, vol.28, pp.472, 2006.
[32] Ambati, M.; Nam, S. H.; Ulin-Avila, E.; Genov, D. A.; Bartal, G.; Zhang, X,” Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8 (11), 3998−4001. 2008.
[33] Noginov, M. A.; Zhu, G.; Mayy, M.; Ritzo, B. A.; Noginova, N.; Podolskiy, V. A,” Stimulated Emission of Surface Plasmon Polaritons,” Phys. Rev. Lett. 101 (22), 226806.7, 2008
[34] Yu-Jung Lu, Jisun Kim, Hung-Ying Chen, Chihhui Wu, Nima Dabidian, Charlotte E. Sanders, Chun-Yuan Wang, Ming-Yen Lu, Bo-Hong Li, Xianggang Qiu4, Wen-Hao Chang, Lih-Juann Chen, Gennady Shvets, Chih-Kang Shih, Shangjr Gwo,” Plasmonic Nanolaser Using Epitaxially Grown Silver Film,” Science 337, 450, 2012.
[35] Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D,” Room-Temperature Ultra- violet Nanowire Nanolasers,” Science, 292, 1897– 1899, 2001.
[36] Noda, S,” Seeking the Ultimate Nanolaser,” Science, 314, 260–261, 2006.
[37] Chou, Y. H.; Chou, B. T.; Chiang, C. K.; Lai, Y. Y.; Yang, C. Y.; Li, H.; Lin, T. R.; Lin, C. C.; Kuo, H. C.; Wang, S. C.; Lu, T. C.” Ultrastrong Mode Confinement in ZnO Surface Plasmon Nanolasers,” ACS Nano, vol.9, pp.3980, figure.2(a). 2015.
[38] Robert W. Keyes,” The Impact of Moore's Law,” IEEE Solid-State Circuits Society Newsletter, vol.11, pp.25-27, 2006.
[39] R.R. Schaller,” Moore's law: past, present and future,” IEEE Spectrum, vol.34, pp.52-59, 1997.
[40] M. Mitchell Waldrop,” The chips are down for Moore’s law,” Nature, vol.530, 2016.
[41] Kumar, Rajesh, Kumar, Girish Al-Dossary, O.Umar, Ahmad,” ZnO nanostructured thin films: Depositions, properties and applications—A review,” Materials Express, vol.5, pp.3-23, 2015.
[42] Zhuang, Jia-Yuan,” Exciton-polariton dispersion relation in ZnO microrod: Simulation and experiment,” 成功大學光電所碩士論文, pp.11, 2020.
[43] Francisco Mireles and Sergio E. Ulloa,” Acceptor binding energies in GaN and AlN,” Phys. Rev. B 58, 3879 – Published 15 August, 1998.
[44] Qing Gu and Yeshaiahu Fainman,” Semiconductor Nanolasers,” Cambridge University Press, pp.283-289, 2017.
[45] Zhuang, Jia-Yuan,” Exciton-polariton dispersion relation in ZnO microrod: Simulation and experiment,” 成功大學光電所碩士論文, pp.34-35, 2020.
[46] 楊雲凱,” 物理氣相沉積(PVD)介紹,” nano communication, vol.22, no.4, pp.33-35, 2015.
[47] Jia-Min Shieh, Yi-Fan Lai, Yong-Chang Lin, Jr-Yau Fang,” Photoluminescence: Principles, Structure, and Applications,” 科儀新知, vol.10, no.5, pp.39-51, 2006.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-10-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-10-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw