進階搜尋


下載電子全文  
系統識別號 U0026-0809201919122600
論文名稱(中文) 海草床遙測光譜調查、關鍵光譜特徵確認與環境因子影響:以澳洲阿得雷德聖文森灣海草床為例
論文名稱(英文) Determining the enhanced separability of seagrass reflectance spectra based on identifying key markers and environmental factors: Case Study of Gulf St. Vincent, South Australia
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 108
學期 1
出版年 108
研究生(中文) 黃蓮花
研究生(英文) Charnsmorn Hwang
電子信箱 hwangcstudent@gmail.com
學號 P58027059
學位類別 博士
語文別 英文
論文頁數 163頁
口試委員 指導教授-張智華
口試委員-林財富
口試委員-王筱雯
口試委員-王驥魁
口試委員-陳起鳳
召集委員-Michael Burch
中文關鍵字 光譜  光譜調查  海草  澳洲阿得雷德  聖文森灣  海草床  遙測光譜 
英文關鍵字 seagrass  spectroradiometry  reflectance endmembers  spectral reflectance profile  spectral signature  reflectance signal  optically shallow coastal waters  remote sensing  benthic bottom type  epiphytes  growing depth  filtered marine water 
學科別分類
中文摘要 none
英文摘要 Seagrasses are a vulnerable and declining coastal habitat, which are crucial to providing shelter and substrata for aquatic microbiota, mollusks, invertebrates, fishes, and sea turtles. More accurate mapping of seagrasses is imperative for their survival as a sustainable natural resource, but is encumbered by the lack of data and data processing techniques for reflectance spectra representing the optical signatures of individual species. Moreover, before reflectance spectra could properly be used as remote sensing endmembers, factors that may obscure the detection of reflectance signals must also be assessed.
Objectives of this study are seven-fold: (1) to determine distinguishing characteristics of spectral profiles for sand versus three temperate seagrasses (Posidonia, Amphibolis, and Heterozostera); (2) to evaluate the most efficient derivative analysis method of spectral reflectance profiles for discriminating between benthic types; and to assess the influences of (3) site location; (4) filtered marine water; (5) epiphytes; (6) natural growing depth; and (7) particular seagrass genera on spectral response signals based on varying degrees of epiphyte presence and natural growing depth.

Results show that the 566:689 and 566:600 bandwidth ratios are useful for differentiating seagrasses from sand and from detritus and algae, respectively. First-derivative deconvolution reflectance spectra, in general, is the most efficient derivative-based method for identifying unique, non-contiguous bandwidths throughout the visible light spectrum, particularly with deconvolution analyses further helping to reveal and isolate 11 key wavelength dimensions (417, 456, 474, 491, 522, 590, 605, 621, 631, 649, and 681 nm). Both differences between sampling sites as well as marine water that is filtered and unfiltered show no statistically significant effect on reflectance endmembers. These results can potentially be applied when extrapolated to other locations; albeit regarding these two factors, first, caution should be used due to proximity of sampling sites and, second, it is possible that water quality at the time of data collection was probably adequately sufficient and therefore negligible in differences. Epiphytes significantly dampen bottom-type reflectance throughout most of the visible light spectrum, excluding bandwidths at 485–510 and 645–680 nm (p < 0.005); these exclusionary bandwidths may be useful for assessment of seagrasses regardless of the influence of epiphyte presence. Growing depth at which seagrasses are naturally found does influence reflectance spectral responses, with the detection of deeper seagrasses (2 to <3 and 3 to <4 m) being less difficult than those growing within 1 to <2 m. Furthermore, as the depth increases, only Heterozostera increases in the exact “red edge” wavelength value at which there is a rapid change in the near-infrared (NIR) spectrum. These findings help to further develop a spectral reflectance library that can be used for improved detection of seagrass endmembers during remote sensing, which can in turn allow for continued monitoring, assessment, and management of seagrasses as a continued natural resource.
論文目次 Table of Contents
ABSTRACT I
DEDICATION III
ACKNOWLEDGEMENTS IV
TABLE OF CONTENTS VI
LIST OF TABLES XI
LIST OF FIGURES XII
CHAPTERS 1
CHAPTER I: INTRODUCTION 1
1.1 Preface 1
1.2 Background 1
1.3 Seagrasses in Decline 3
1.4 Mapping techniques of seagrass 5
1.5 Dimensions Reduction Approach 8
1.5.1 Basic Seagrass Spectral Properties 9
1.5.2 Bandwidth Ratios 10
1.5.3 Derivative and Deconvolution Analyses 11
1.6 Epiphytes on Seagrass Leaves 12
1.7 Natural growing depth of seagrasses 14
1.8 Goal and Objectives. 16
1.9 Research Framework Overview 16
CHAPTER II: METHODS 20
2.1 Study Area Background 20
2.2 Field Sampling Collection 21
2.3 Obtaining Spectral Reflectance Values 33
2.4 Deconvolution Analyses 45
2.5 Statistical Analyses 46
CHAPTER III: RESULTS AND DISCUSSION 48
3.1 Discriminating between Benthic Bottom Types 48
3.2 Deconvolution of Seagrass Spectra 52
3.3 Impact of Site Location 59
3.4 Influence of Marine Filtered Water 62
3.5 Epiphytes and the Reflectance Signal 66
3.6 Spectral Response due to Natural Growing Depth 70
3.7 Epiphyte “Preference” based on Seagrass Genus 80
3.8 Influence of Growing Depth by Genus of Seagrass Spectra 86
CHAPTER IV: CONCLUSION 91
4.1 Summary 91
4.2 Limitations of Study 93
4.3 Implications and Future Work 95
LITERATURE CITED 100
APPENDICES 122
Appendix A. Detailed schedule of specimen and background reflectance collection for 7 sampling sites centering around Bolivar and Seacliff. Column names are as follows: date; general location area; location code name; latitude/longitude; depth at which specimen was natural growing; benthic bottom type (usually sand or a seagrass genus); filtered or unfiltered marine water; and whether or not the specimen was cut in half and reflectance was measured separated for leaf blades (epiphytes most frequently found) and leaf sheaths (epiphytes least frequently found), respectively. 123
Appendix B. List of characteristic, distinguishing peak centers and amplitudes (x–y) for deconvolved original (raw) spectral reflectance profiles of 3 seagrasses—Posidonia, Amphibolis, and Heterozostera—found at the sampling sites within the coastal waters of metropolitan Adelaide, South Australia. Peak centers for different seagrasses within ≤5-nm of each other are grouped together and may produce detectable overlapping spectral signals that may be separated. 125
Appendix C. List of characteristic, distinguishing peak centers and amplitudes (x–y) for first-order derivative deconvolution spectral reflectance profiles for 3 seagrasses—Posidonia, Amphibolis, and Heterozostera—found at the sampling sites within the coastal waters of metropolitan Adelaide, South Australia. Peak centers for different seagrasses within ≤5-nm of each other are grouped together and may produce detectable overlapping spectral signals that may be separated. 126
Appendix D. List of characteristic, distinguishing peak centers and amplitudes (x–y) for second-order derivative deconvolution spectral reflectance profiles for 3 seagrasses—Posidonia, Amphibolis, and Heterozostera—found at the sampling sites within the coastal waters of metropolitan Adelaide, South Australia. Peak centers for different seagrasses within ≤5-nm of each other are grouped together and may produce detectable overlapping spectral signals that may be separated. 127
Appendix E. List of characteristic, distinguishing peak centers and amplitudes (x–y) for fourth-order derivative deconvolution spectral reflectance profiles for 3 seagrasses—Posidonia, Amphibolis, and Heterozostera—found at the sampling sites within the coastal waters of metropolitan Adelaide, South Australia. Peak centers for different seagrasses within ≤5-nm of each other are grouped together and may produce detectable overlapping spectral signals that may be separated. 128
Appendix F. Five steps for differentiation of benthic bottom types found in South Australia study area. 129
Appendix G. Wavelengths where the reflectance values for seagrasses at both study locations, Bolivar and Seacliff, were not statistically significantly different (p ≥ 0.05). 131
Appendix I. Non-significant wavelengths (p ≥ 0.05) at which the reflectance for seagrass leaf tops do not differ from that of leaf sheaths/stem bases. 141
參考文獻 Altman, N., & Krzywinski, M. (2015). Association, correlation and causation. Nature Methods, 12, 899. doi:10.1038/nmeth.3587
Barbier, E. B.; Hacker, S. D.; Kennedy, C.; Koch, E. W.; Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169-193. doi:10.1890/10-1510.1
Bargain, A.; Robin, M.; Le Men, E.; Huete, A., & Barillé, L. (2012). Spectral response of the seagrass Zostera noltii with different sediment backgrounds. Aquatic Botany, 98(1), 45-56. doi:http://dx.doi.org/10.1016/j.aquabot.2011.12.009
Bargain, A.; Robin, M.; Méléder, V.; Rosa, P.; Le Menn, E.; Harin, N., & Barillé, L. (2013). Seasonal spectral variation of Zostera noltii and its influence on pigment-based Vegetation Indices. Journal of Experimental Marine Biology and Ecology, 446, 86-94. doi:http://dx.doi.org/10.1016/j.jembe.2013.04.012
Barillé, L.; Robin, M.; Harin, N.; Bargain, A., & Launeau, P. (2010). Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing. Aquatic Botany, 92(3), 185-194.
Blackburn, D. T., & Dekker, A. G. (2006). Remote sensing study of marine and coastal features and interpretation of changes in relation to natural and anthropogenic processes: Final Technical Report. ACWS Technical Report No. 6. Prepared for the Adelaide Coastal Waters Study Steering Committee. Retrieved from Adelaide, South Australia:
Bone, Y.; Deer, L.; Edwards, S., & Campbell, E. (2006). Adelaide Coastal Waters Study Coastal Sediment Budget. ACWS Technical Report No. 16 prepared for the Adelaide Coastal Waters Study Steering Committee. Retrieved from Adelaide, South Australia:
Borfecchia, F.; De Cecco, L.; Martini, S.; Ceriola, G.; Bollanos, S.; Vlachopoulos, G.; Valiante, L. M.; Belmonte, A., & Micheli, C. (2013). Posidonia oceanica genetic and biometry mapping through high-resolution satellite spectral vegetation indices and sea-truth calibration. International Journal of Remote Sensing, 34(13), 4680-4701. doi:10.1080/01431161.2013.781701
Borowitzka, M. A.; Lavery, P. S., & van Keulen, M. (2006). Epiphytes of Seagrasses. In A. W. D. Larkum, R. J. Orth, & C. M. Duarte (Eds.), Seagrasses: Biology, Ecology and Conservation (pp. 441-461). Dordrecht: Springer Netherlands.
Brando, V., & Dekker, A. G. (2003). Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1378-1387. doi:10.1109/TGRS.2003.812907
Bryars, S. (2008). General introduction. In S. Bryars (Ed.), Restoration of Coastal Seagrass Ecosystems: Amphibolis antarctica in Gulf St Vincent, South Australia. SARDI Aquatic Sciences Publication No. F2008/000078, SARDI Research Report Series No. 277 (pp. 2-4). Adelaide, South Australia: South Australian Research and Development Institute (Aquatic Sciences).
Bryars, S.; Collings, G.; Nayar, S.; Westphalen, G.; Miller, D.; O’Loughlin, E.; Fernandes, M.; Mount, G.; Tanner, J.; Wear, R.; Eglinton, Y., & Cheshire, A. (2006). Assessment of the effects of inputs to the Adelaide coastal waters on the meadow forming seagrasses, Amphibolis and Posidonia. Task EP 1 Final Technical Report. ACWS Technical Report No. 15. Prepared for the Adelaide Coastal Waters Study Steering Committee (Publication No. RD01/0208-19). Retrieved from Adelaide, South Australia:
Bryars, S.; Collings, G., & Theil, M. (2008). Chapter 3. Effects of in situ light deprivation on the biomass and epiphyte load of Amphibolis antarctica. In S. Bryars (Ed.), Restoration of Coastal Seagrass Ecosystems: Amphibolis antarctica in Gulf St Vincent, South Australia. SARDI Aquatic Sciences Publication No. F2008/000078, SARDI Research Report Series No. 277 (pp. 54-61). Adelaide, South Australia: South Australian Research and Development Institute (Aquatic Sciences).
Bryars, S.; Miller, D.; Collings, G.; Fernandes, M.; Mount, G., & Wear, R. (2006). Field surveys 2003-2005: Assessment of the quality of Adelaide’s coastal waters, sediments and seagrasses. ACWS Technical Report No. 14. Prepared for the Adelaide Coastal Waters Study Steering Committee. Publication No. RD01/0208-15. Retrieved from Adelaide, South Australia:
Bryars, S., & Neverauskas, V. (2008). Chapter 4. Contrasts in seagrass loss and recovery at two nearby sewage sludge outfalls. In S. Bryars (Ed.), Restoration of Coastal Seagrass Ecosystems: Amphibolis antarctica in Gulf St Vincent, South Australia. SARDI Aquatic Sciences Publication No. F2008/000078, SARDI Research Report Series No. 277 (pp. 62-69). Adelaide, South Australia: South Australian Research and Development Institute (Aquatic Sciences).
Bryars, S., & Rowling, K. (2008). Chapter 1. Benthic habitats of eastern Gulf St Vincent: major changes in seagrass distribution and composition since European settlement of Adelaide. In S. Bryars (Ed.), Restoration of Coastal Seagrass Ecosystems: Amphibolis antarctica in Gulf St Vincent, South Australia. SARDI Aquatic Sciences Publication No. F2008/000078, SARDI Research Report Series No. 277 (pp. 5-27). Adelaide, South Australia: South Australian Research and Development Institute (Aquatic Sciences).
Bryars, S., & Rowling, K. (2009). Benthic habitats of eastern Gulf St Vincent: major changes in benthic cover and composition following European settlement of Adelaide. Transactions of the Royal Society of South Australia, 133(2), 318-338.
Cappello, T.; Giannetto, A.; Parrino, V.; Maisano, M.; Oliva, S.; De Marco, G.; Guerriero, G.; Mauceri, A., & Fasulo, S. (2018). Baseline levels of metabolites in different tissues of mussel Mytilus galloprovincialis (Bivalvia: Mytilidae). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 26, 32-39.
Chang, C.-H.; Liu, C.-C.; Chung, H.-W.; Lee, L.-J., & Yang, W.-C. (2014). Development and evaluation of a genetic algorithm-based ocean color inversion model for simultaneously retrieving optical properties and bottom types in coral reef regions. Appl Opt, 53(4), 605-617. doi:10.1364/AO.53.000605
Christensen, S., & Goudriaan, J. (1993). Deriving light interception and biomass from spectral reflectance ratio. Remote Sensing of Environment, 43(1), 87-95.
Clarke, K.; Hennessy, A., & Lewis, M. (2018). Adelaide Metropolitan Coastline benthic habitat mapping from hyperspectral imagery. Product A: Bare-substrate vs non-bare Substrate. Prepared for SA Water, SA Department for Environment and Water, and SA Environmental Protection Authority, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia. Retrieved from Adelaide, South Australia:
Collings, G.; Bryars, S.; Nayar, S.; Miller, D.; Lill, J., & O’Loughlin, E. (2006). Elevated nutrient responses of the meadow forming seagrasses, Amphibolis and Posidonia, from the Adelaide metropolitan coastline. ACWS Technical Report No. 11. Publication No. RD01/0208-16. Retrieved from Adelaide, South Australia:
Cornell Cooperative Extension Marine Program. (2017). Fauna and Flora: Epiphytes. Retrieved from http://www.seagrassli.org/ecology/fauna_flora/epiphytes.html
Cunha, A. H.; Assis, J. F., & Serrão, E. A. (2014). Reprint of “Seagrasses in Portugal: A most endangered marine habitat”. Aquatic Botany, 115(0), 3-13. doi:http://dx.doi.org/10.1016/j.aquabot.2014.02.007
Davies, T. (1998). The new automated mass spectrometry deconvolution and identification system (AMDIS). Spectroscopy Europe, 10(3), 24-27.
Dekker, A.; Phinn, S. R.; Anstee, J.; Bissett, P.; Brando, V.; Casey, B.; Fearns, P.; Hedley, J. D.; Klonowski, W.; Lee, Z.; Lynch, M.; Lyons, M.; Mobley, C., & Roelfsema, C. (2011). Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnology and Oceanography Methods, 9, 30.
Dekker, A. G.; Brando, V.; Anstee, J.; Fyfe, S.; Malthus, T., & Karpouzli, E. (2006). Remote Sensing of Seagrass Ecosystems: Use of Spaceborne and Airborne Sensors Seagrasses: Biology, Ecology and Conservation (pp. 347-359): Springer Netherlands.
Dekker, A. G.; Brando, V. E., & Anstee, J. M. (2005). Retrospective seagrass change detection in a shallow coastal tidal Australian lake. Remote Sensing of Environment, 97(4), 415-433. doi:http://dx.doi.org/10.1016/j.rse.2005.02.017
Demetriades-Shah, T. H.; Steven, M. D., & Clark, J. A. (1990). High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 33(1), 55-64.
Dierssen, H. M.; Kudela, R. M.; Ryan, J. P., & Zimmerman, R. C. (2006). Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnology and Oceanography, 51(6), 2646-2659. doi:10.4319/lo.2006.51.6.2646
Dierssen, H. M.; Zimmerman, R. C.; Leathers, R. A.; Downes, T. V., & Davis, C. O. (2003). Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery. Limnology and Oceanography, 48(1part2), 444-455. doi:10.4319/lo.2003.48.1_part_2.0444
Dolch, T., & Reise, K. (2010). Long-term displacement of intertidal seagrass and mussel beds by expanding large sandy bedforms in the northern Wadden Sea. Journal of Sea Research, 63(2), 93-101. doi:http://dx.doi.org/10.1016/j.seares.2009.10.004
Drake, L. A.; Dobbs, F. C., & Zimmerman, R. C. (2003). Effects of epiphyte load on optical properties and photosynthetic potential of the seagrasses Thalassia testudinum Banks ex König and Zostera marina L. Limnology and Oceanography, 48(1part2), 456-463.
Duarte, C. M. (2002). The future of seagrass meadows. Environmental Conservation, 29(02), 192-206. doi:doi:10.1017/S0376892902000127
Duarte, C. M.; Marba, N., & Santos, R. (2004). What may cause loss of seagrasses? In J. Borum, C. M. Duarte, D. Krause-Jensen, & T. M. Greve (Eds.), European Seagrasses: An Introduction to Monitoring and Management (pp. 24-32). http://www.seagrasses.org: EU Monitoring and Managing of European Seagrasses (M&MS) EVK3-CT-2000-00044.
Dunk, I., & Lewis, M. (2000). Seagrass and shallow water feature discrimination using HyMap imagery. Paper presented at the 10th Australasian Remote Sensing Photogrammetry Conference, Adelaide, Australia.
Esteban, N.; Unsworth, R. K. F.; Gourlay, J. B. Q., & Hays, G. C. (2018). The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles. Marine Pollution Bulletin, 134, 99-105. doi:https://doi.org/10.1016/j.marpolbul.2018.03.018
Fearns, P. R. C.; Klonowski, W.; Babcock, R. C.; England, P., & Phillips, J. (2011). Shallow water substrate mapping using hyperspectral remote sensing. Continental Shelf Research, 31(12), 1249-1259. doi:http://dx.doi.org/10.1016/j.csr.2011.04.005
Fernandes, M. (2019). [Personal communication with Milena Fernandes regarding PRIF (2012–2013 Premier’s Research and Industry Fund) research grant for "Enhanced water management through advanced monitoring" of seagrasses (Research Project No. CS7665)].
Fourqurean, J. W.; Manuel, S.; Coates, K. A.; Kenworthy, W. J., & Smith, S. R. (2010). Effects of excluding sea turtle herbivores from a seagrass bed: overgrazing may have led to loss of seagrass meadows in Bermuda. Marine Ecology Progress Series, 419, 223-232.
Fourqurean, J. W.; Manuel, S. A.; Coates, K. A.; Massey, S. C., & Kenworthy, W. J. (2019). Decadal Monitoring in Bermuda Shows a Widespread Loss of Seagrasses Attributable to Overgrazing by the Green Sea Turtle Chelonia mydas. Estuaries and Coasts, 1-17.
Fox, D. R.; Batley, G. E.; Blackburn, D.; Bone, Y.; Bryars, S.; Cheshire, A.; Collings, G.; Ellis, D.; Fairweather, P.; Fallowfield, H.; Harris, G.; Henderson, B.; Kämpf, J.; S., N.; Pattiaratchi, C.; Petrusevics, P.; Townsend, M.; Westphalen, G., & Wilkinson, J. (2007). The Adelaide Coastal Waters Study: Final report. Volume 1, Summary of study findings. Glen Osmond, South Australia: South Australian Environment Protection Agency.
Fulton, S. (2014). An analysis of the spectral reflectance separability of Amphibolis griffithii and Posidonia sinuosa at different water depths. (Bachelor of Applied Geographical Information Systems (BAGIS)), The Flinders University of South Australia, Adelaide, Australia.
Fyfe, S. K. (2003). Spatial and temporal variation in spectral reflectance: Are seagrass species spectrally distinct? Limnology and Oceanography, 48(1), 16. doi:https://doi.org/10.4319/lo.2003.48.1_part_2.0464
Gallopin, G. C. (1996). Environmental and sustainability indicators and the concept of situational indicators. A systems approach. Environmental Modeling & Assessment, 1(3), 101-117.
Gitelson, A. A.; Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. Journal of Plant Physiology, 148(3-4), 501-508.
Gladstone, W., & Courtenay, G. (2014). Impacts of docks on seagrass and effects of management practices to ameliorate these impacts. Estuarine, Coastal and Shelf Science, 136(0), 53-60. doi:http://dx.doi.org/10.1016/j.ecss.2013.10.023
Goodman, J., & Ustin, S. L. (2007). Classification of benthic composition in a coral reef environment using spectral unmixing. Journal of Applied Remote Sensing, 1(1), 011501-011501-011517. doi:10.1117/1.2815907
Greve, T. M., & Binzer, T. (2004). Which factors regulate seagrass growth and distribution? In J. Borum, C. M. Duarte, D. Krause-Jensen, & T. M. Greve (Eds.), European Seagrasses: An Introduction to Monitoring and Management (pp. 19-23). http://www.seagrasses.org: EU Monitoring and Managing of European Seagrasses (M&MS) EVK3-CT-2000-00044.
Han, L. (2002). Spectral reflectance of Thalassia testudinum with varying depths. Paper presented at the International Geoscience and Remote Sensing Symposium, Toronto, Canada.
Han, L., & Rundquist, D. C. (1997). Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir. Remote Sensing of Environment, 62(3), 253-261.
Han, L., & Rundquist, D. C. (2003). The spectral responses of Ceratophyllum demersum at varying depths in an experimental tank. International Journal of Remote Sensing, 24(4), 859-864. doi:10.1080/0143116021000009868
Hart, D. (2013). Seagrass extent change 2007-13-Adelaide coastal waters. DEWNR Technical note 2013/07.: Government of South Australia. Department of Environment Water and Natural Resources, Adelaide, South Australia.
Hasler-Sheetal, H.; Fragner, L.; Holmer, M., & Weckwerth, W. (2015). Diurnal effects of anoxia on the metabolome of the seagrass Zostera marina. Metabolomics, 11(5), 1208-1218.
Hedley, J. D., & Mumby, P. J. (2003). A remote sensing method for resolving depth and subpixel composition of aquatic benthos. Limnology and Oceanography, 48(Part 1 of 2), 480-488.
Hemminga, M. A., & Duarte, C. M. (2008). Seagrass Ecology. Cambridge, UK: Cambridge University Press.
Hochberg, E. J., & Atkinson, M. J. (2000). Spectral discrimination of coral reef benthic communities. Coral Reefs, 19(2), 164-171. doi:10.1007/s003380000087
Hochberg, E. J.; Atkinson, M. J., & Andréfouët, S. (2003). Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing. Remote Sensing of Environment, 85(2), 159-173. doi:http://dx.doi.org/10.1016/S0034-4257(02)00201-8
Holden, H., & LeDrew, E. (1999). Hyperspectral identification of coral reef features. International Journal of Remote Sensing, 20(13), 2545-2563. doi:10.1080/014311699211921
Holden, H., & LeDrew, E. (2001). Effects of the water column on hyperspectral reflectance of submerged coral reef features. Bulletin of Marine Science, 69(2), 685-699.
Hornberger, G. M., & Spear, R. C. (1981). Approach to the preliminary analysis of environmental systems. Journal of Environmental Management, 12(1), 7-18.
Hughes, T. P.; Baird, A. H.; Bellwood, D. R.; Card, M.; Connolly, S. R.; Folke, C.; Grosberg, R.; Hoegh-Guldberg, O.; Jackson, J. B. C.; Kleypas, J.; Lough, J. M.; Marshall, P.; Nyström, M.; Palumbi, S. R.; Pandolfi, J. M.; Rosen, B., & Roughgarden, J. (2003). Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science, 301(5635), 929-933. doi:10.1126/science.1085046
Hwang, C., & Chang, C.-H. (2019a). Assessment of Growing Depth, Epiphytes, and Their Interactions on Spectral Reflectance Detection of Seagrasses: Case Study of Gulf St. Vincent, South Australia. Paper presented at the 2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability: ECBIOS (Poster), Okinawa, Japan. Poster retrieved from
Hwang, C., & Chang, C.-H. (2019b). Dimension Reduction and Spectral Deconvolution Analyses for Differentiation of Seagrasses: Case Study of Gulf St. Vincent, South Australia. Paper presented at the 2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability: ECBIOS (Presentation), Okinawa, Japan.
Hwang, C.; Chang, C.-H.; Burch, M.; Fernandes, M., & Kildea, T. (2019a). Effects of Epiphytes and Depth on Seagrass Spectral Profiles: Case Study of Gulf St. Vincent, South Australia. International Journal of Environmental Research and Public Health, 16(15), 2701. doi:10.3390/ijerph16152701
Hwang, C.; Chang, C.-H.; Burch, M.; Fernandes, M., & Kildea, T. (2019b). Spectral Deconvolution for Dimension Reduction and Differentiation of Seagrasses: Case Study of Gulf St. Vincent, South Australia. Sustainability, 11(13), 3695. doi:10.3390/su11133695
Ierodiaconou, D. A., & Laurenson, L. J. (2002). Estimates of Heterozostera tasmanica, Zostera muelleri and Ruppia megacarpa distribution and biomass in the Hopkins Estuary, western Victoria, by GIS. Australian Journal of Botany, 50(2), 215-228.
Jackson, N. L.; Nordstrom, K. F.; Feagin, R. A., & Smith, W. K. (2013). Coastal geomorphology and restoration. Geomorphology, 199(0), 1-7. doi:http://dx.doi.org/10.1016/j.geomorph.2013.06.027
Jernakoff, P., & Nielsen, J. (1998). Plant–animal associations in two species of seagrasses in Western Australia. Aquatic Botany, 60(4), 359-376.
Joyce, K. E., & Phinn, S. R. (2002). Bi-directional reflectance of corals. International Journal of Remote Sensing, 23(2), 389-394. doi:10.1080/01431160110079420
Kakuta, S.; Takeuchi, W., & Prathep, A. (2015). Seaweed and seagrass mapping in Thailand measured by using Landsat 8 optical and texture properties. Paper presented at the International Symposium on Remote Sensing (ISRS), Tainan, Taiwan.
Karpouzli, E.; Malthus, T. J., & Place, C. J. (2004). Hyperspectral discrimination of coral reef benthic communities in the western Caribbean. Coral Reefs, 23(1), 141-151. doi:10.1007/s00338-003-0363-9
Kilminster, K.; McMahon, K.; Waycott, M.; Kendrick, G. A.; Scanes, P.; McKenzie, L.; O'Brien, K. R.; Lyons, M.; Ferguson, A., & Maxwell, P. (2015). Unravelling complexity in seagrass systems for management: Australia as a microcosm. Science of the Total Environment, 534, 97-109.
Kimura, T.; Dai, C.-F.; Park, H.-S.; Hui, H., & Ang, P. O. (2008). Status of Coral Reefs in East and North Asia (China, Hong Kong , Taiwan, South Korea and Japan). In G. C. R. M. Network (Ed.), Status of Coral Reefs of the World 2008 (pp. 145-158): Global Coral Reef Monitoring Network. Retrieved from http://02cbb49.netsolhost.com/gcrmn/2008/10.%20East%20&%20North%20East%20Asia.pdf.
Kirkman, H. (1997). Seagrasses of Australia. Canberra: Environment Australia.
Knudby, A.; LeDrew, E., & Newman, C. (2007). Progress in the use of remote sensing for coral reef biodiversity studies. Progress in Physical Geography, 31(4), 421-434. doi:10.1177/0309133307081292
Kutser, T.; Vahtmäe, E., & Martin, G. (2006). Assessing suitability of multispectral satellites for mapping benthic macroalgal cover in turbid coastal waters by means of model simulations. Estuarine, Coastal and Shelf Science, 67(3), 521-529. doi:http://dx.doi.org/10.1016/j.ecss.2005.12.004
Labsphere. (2019). Spectralon EPV: Spectralon for Extreme Physics and Vacuum (PB-13078 Revision 03 ed.). North Sutton, NH (USA): Labpshere.
Larkum, A. W. D.; Orth, R. J., & Duarte, C. M. (2006). Seagrasses: Springer.
Lavery, P. S.; McMahon, K.; Mulligan, M., & Tennyson, A. (2009). Interactive effects of timing, intensity and duration of experimental shading on Amphibolis griffithii. Marine Ecology Progress Series, 394, 21-33.
Maritorena, S.; Morel, A., & Gentili, B. (1994). Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo. Limnology and Oceanography, 39(7), 15.
May, V.; Collins, A. J., & Collett, L. C. (1978). A comparative study of epiphytic algal communities on two common genera of sea-grasses in eastern Australia. Australian Journal of Ecology, 3(1), 91-104. doi:10.1111/j.1442-9993.1978.tb00855.x
McArthur, L. C., & Boland, J. W. (2006). The economic contribution of seagrass to secondary production in South Australia. Ecological Modelling, 196(1–2), 163-172. doi:http://dx.doi.org/10.1016/j.ecolmodel.2006.02.030
McMahon, K., & Lavery, P. S. (2014). Canopy-scale modifications of the seagrass Amphibolis griffithii in response to and recovery from light reduction. Journal of Experimental Marine Biology and Ecology, 455(0), 38-44. doi:http://dx.doi.org/10.1016/j.jembe.2014.02.015
Medjahed, S. A., & Ouali, M. (2018). Band selection based on optimization approach for hyperspectral image classification. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 413-418. doi:https://doi.org/10.1016/j.ejrs.2018.01.003
Miglani, A. (2010, December 7, 2010). Hyperspectral Remote Sensing--an Overview. Retrieved from https://www.geospatialworld.net/article/hyperspectral-remote-sensing-an-overview/
Mishra, D. R.; Narumalani, S.; Rundquist, D.; Lawson, M., & Perk, R. (2007). Enhancing the detection and classification of coral reef and associated benthic habitats: A hyperspectral remote sensing approach. Journal of Geophysical Research: Oceans, 112(C8), C08014. doi:10.1029/2006JC003892
Mobley, C. D. (1999). Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, 38(36), 7442-7455. doi:10.1364/AO.38.007442
Mueller, J. L.; Davis, C.; Arnone, R.; Frouin, R.; Carder, K.; Lee, Z.; Steward, R.; Hooker, S.; Mobley, C. D., & McLean, S. (2000). Above-water radiance and remote sensing reflectance measurements and analysis protocols. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation Revision, 2, 98-107.
Mueller, J. L.; Morel, A.; Frouin, R.; Davis, C.; Arnone, R.; Carder, K.; Lee, Z.; Steward, R.; Hooker, S., & Mobley, C. (2003). Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4. Volume III: Radiometric Measurements and Data Analysis Protocols.
Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi medical journal : the journal of Medical Association of Malawi, 24(3), 69-71.
Mumby, P. J.; Chisholm, J. R. M.; Clark, C. D.; Hedley, J. D., & Jaubert, J. (2001). Spectrographic imaging: A bird's-eye view of the health of coral reefs. Nature, 413(6851), 36-36.
Mumby, P. J.; Skirving, W.; Strong, A. E.; Hardy, J. T.; LeDrew, E. F.; Hochberg, E. J.; Stumpf, R. P., & David, L. T. (2004). Remote sensing of coral reefs and their physical environment. Marine Pollution Bulletin, 48(3–4), 219-228. doi:http://dx.doi.org/10.1016/j.marpolbul.2003.10.031
Munday, P. L.; Leis, J. M.; Lough, J. M.; Paris, C. B.; Kingsford, M. J.; Berumen, M. L., & Lambrechts, J. (2009). Climate change and coral reef connectivity. Coral Reefs, 28(2), 379-395. doi:10.1007/s00338-008-0461-9
Nayar, S.; Collings, G.; Pfennig, P., & Royal, M. (2012). Managing nitrogen inputs into seagrass meadows near a coastal city: Flow-on from research to environmental improvement plans. Marine Pollution Bulletin, 64(5), 932-940. doi:http://dx.doi.org/10.1016/j.marpolbul.2012.03.005
O’Neill, J. D., & Costa, M. (2013). Mapping eelgrass (Zostera marina) in the Gulf Islands National Park Reserve of Canada using high spatial resolution satellite and airborne imagery. Remote Sensing of Environment, 133(0), 152-167. doi:http://dx.doi.org/10.1016/j.rse.2013.02.010
O’Neill, J. D.; Costa, M., & Sharma, T. (2011). Remote Sensing of Shallow Coastal Benthic Substrates: In situ Spectra and Mapping of Eelgrass (Zostera marina) in the Gulf Islands National Park Reserve of Canada. Remote Sensing, 3(5), 975. doi:10.3390/rs3050975
Ocean Optics. (2010). JAZ Installation and Operation Manual. Document Number 013-RD000-000-02-201502. Winter Park, FL (USA): Ocean Optics.
Ocean Optics. (2013). OceanView Installation and Operation Manual. Document Number 000-20000-310-02-201503. Winter Park, FL (USA): Ocean Optics.
Ocean Optics. (2014). Cosine Correctors. Retrieved from https://oceanoptics.com/product-category/cosine-correctors/
Orth, R. J.; Carruthers, T. J. B.; Dennison, W. C.; Duarte, C. M.; Fourqurean, J. W.; Heck, K. L.; Hughes, A. R.; Kendrick, G. A.; Kenworthy, W. J.; Olyarnik, S.; Short, F. T.; Waycott, M., & Williams, S. L. (2006). A Global Crisis for Seagrass Ecosystems. BioScience, 56(12), 987-996. doi:10.1641/0006-3568(2006)56[987:agcfse]2.0.co;2
Pandolfi, J. M.; Bradbury, R. H.; Sala, E.; Hughes, T. P.; Bjorndal, K. A.; Cooke, R. G.; McArdle, D.; McClenachan, L.; Newman, M. J. H.; Paredes, G.; Warner, R. R., & Jackson, J. B. C. (2003). Global Trajectories of the Long-Term Decline of Coral Reef Ecosystems. Science, 301(5635), 955-958. doi:10.1126/science.1085706
Parrino, V.; Costa, G.; Cannavà, C.; Fazio, E.; Bonsignore, M.; Concetta, S.; Piccione, G., & Fazio, F. (2019). Flow cytometry and micro-Raman spectroscopy: Identification of hemocyte populations in the mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) from Faro Lake and Tyrrhenian Sea (Sicily, Italy). Fish & Shellfish Immunology, 87, 1-8.
Patten, B. C. (1978). Systems approach to the concept of environment.
Petrusevics, P. (2005). Distribution of Suspended Matter in Adelaide Coastal Waters Using SeaWiFS Data. Final Technical Report (ACWS Technical Report No. 5 prepared for the Adelaide Coastal Waters Study Steering Committee, August 2005 Oceanique Perspectives, Adelaide.). Retrieved from
Phinn, S.; Roelfsema, C.; Dekker, A.; Brando, V., & Anstee, J. (2008). Mapping seagrass species, cover and biomass in shallow waters: An assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia). Remote Sensing of Environment, 112(8), 3413-3425. doi:http://dx.doi.org/10.1016/j.rse.2007.09.017
Poulsen, J., & French, A. (2001). Discriminant Function Analysis (DA), San Francisco State University.
Ralph, P. J.; Durako, M. J.; Enríquez, S.; Collier, C. J., & Doblin, M. A. (2007). Impact of light limitation on seagrasses. Journal of Experimental Marine Biology and Ecology, 350(1–2), 176-193. doi:http://dx.doi.org/10.1016/j.jembe.2007.06.017
Roelfsema, C.; Kovacs, E. M.; Saunders, M. I.; Phinn, S.; Lyons, M., & Maxwell, P. (2013). Challenges of remote sensing for quantifying changes in large complex seagrass environments. Estuarine, Coastal and Shelf Science, 133(0), 161-171. doi:http://dx.doi.org/10.1016/j.ecss.2013.08.026
Roelfsema, C. M.; Lyons, M.; Kovacs, E. M.; Maxwell, P.; Saunders, M. I.; Samper-Villarreal, J., & Phinn, S. R. (2014). Multi-temporal mapping of seagrass cover, species and biomass: A semi-automated object based image analysis approach. Remote Sensing of Environment, 150(0), 172-187. doi:http://dx.doi.org/10.1016/j.rse.2014.05.001
Saakov, V.; Z. Drapkin, V.; I. Krivchenko, A.; V. Rozengart, E.; Bogachev, Y., & N. Knyazev, M. (2013). Derivative Spectrophotometry and Electron Spin Resonance (ESR) Spectroscopy for Ecological and Biological Questions.
Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047
Scheinost, A.; Chavernas, A.; Barrón, V., & Torrent, J. (1998). Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify Fe oxide minerals in soils. Clays and Clay Minerals, 46(5), 528-536.
Smith, A. M. S.; Falkowski, M. J.; Greenberg, J. A., & Tinkham, W. T. (2014). Remote sensing of vegetation structure, function, and condition: Special issue. Remote Sensing of Environment, 154(0), 319-321. doi:http://dx.doi.org/10.1016/j.rse.2014.05.002
Takebe, M.; Yoneyama, T.; Inada, K., & Murakami, T. (1990). Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant and Soil, 122(2), 295-297.
Tanner, J. E.; Irving, A. D.; Fernandes, M.; Fotheringham, D.; McArdle, A., & Murray‐Jones, S. (2014). Seagrass rehabilitation off metropolitan Adelaide: a case study of loss, action, failure and success. Ecological Management & Restoration, 15(3), 168-179.
Tanner, J. E.; Theil, M., & Fotheringham, D. G. (2014). Seagrass Condition Monitoring: Encounter Bay and Port Adelaide. Final report prepared for the Adelaide and Mount Lofty Ranges Natural Resources Management Board. West Beach, SA: South Australian Research and Development Institution.
Taylor, P. D., & Wilson, M. A. (2003). Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62(1-2), 1-103.
Transon, J.; D’Andrimont, R.; Maugnard, A., & Defourny, P. (2018). Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context. Remote Sensing, 10(2). doi:10.3390/rs10020157
Trautman, D. A., & Borowitzka, M. A. (1999). Distribution of the epiphytic organisms on Posidonia australis and P. sinuosa, two seagrasses with differing leaf morphology. Marine Ecology Progress Series, 179, 215-229.
Treilibs, C.; Lewis, M., & Sparrow, B. (2005). Seagrass discrimination and mapping in association with Atlantic salmon aquaculture, Cape Jaffa, South Australia: Report to the Native Vegetation Council. Retrieved from Adelaide, South Australia:
Tsai, F., & Philpot, W. (1998). Derivative analysis of hyperspectral data. Remote Sensing of Environment, 66(1), 41-51.
Twardowski, M. S.; Lewis, M. R.; Barnard, A. H.; Ronald, J., & Zaneveld, V. (2005). In-Water Instrumentation and Platforms for Ocean Color Remote Sensing Applications. In R. L. Miller, C. E. Del Castillo, & B. A. Mckee (Eds.), Remote Sensing of Coastal Aquatic Environments (pp. 345). Dordrecht, The Netherlands: Springer Netherlands.
Vahtmäe, E.; Kutser, T.; Martin, G., & Kotta, J. (2006). Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea case study. Remote Sensing of Environment, 101(3), 342-351. doi:http://dx.doi.org/10.1016/j.rse.2006.01.009
Veys, C.; Hibbert, J.; Davis, P., & Grieve, B. (2017). An ultra-low-cost active multispectral crop diagnostics device. Paper presented at the 2017 IEEE SENSORS.
Wabnitz, C. C.; Andréfouët, S.; Torres-Pulliza, D.; Müller-Karger, F. E., & Kramer, P. A. (2008). Regional-scale seagrass habitat mapping in the Wider Caribbean region using Landsat sensors: Applications to conservation and ecology. Remote Sensing of Environment, 112(8), 3455-3467. doi:http://dx.doi.org/10.1016/j.rse.2008.01.020
Waycott, M.; Duarte, C. M.; Carruthers, T. J. B.; Orth, R. J.; Dennison, W. C.; Olyarnik, S.; Calladine, A.; Fourqurean, J. W.; Heck, K. L.; Hughes, A. R.; Kendrick, G. A.; Kenworthy, W. J.; Short, F. T., & Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences, 106(30), 12377-12381. doi:10.1073/pnas.0905620106
West, R. (1990). Depth-related structural and morphological variations in an Australian Posidonia seagrass bed. Aquatic Botany, 36(2), 153-166.
Westphalen, G. (2016). [Personal communication with Grant Westphalen regarding data collection for PRIF (2012–2013 Premier’s Research and Industry Fund) research grant for "Enhanced water management through advanced monitoring" of seagrasses (Research Project No. CS7665)].
Westphalen, G.; Collings, G.; Wear, R.; Fernandes, M.; Bryars, S., & Cheshire, A. (2005). A review of seagrass loss on the Adelaide metropolitan coastline. ACWS Technical Report No. 2. Prepared for the Adelaide Coastal Waters Study Steering Committee (Publication No. RD04/0073). Retrieved from Adelaide, South Australia:
Westphalen, G.; O’Loughlin, E.; Collings, G.; Tanner, J.; Eglinton, Y., & Bryars, S. (2005). Responses to reduced salinities of the meadow forming seagrasses Amphibolis and Posidonia from the Adelaide metropolitan coast. ACWS Technical Report No. 9. Prepared for the Adelaide Coastal Waters Study Steering Committee (Publication No. RD01/020814). Retrieved from Adelaide, South Australia:
Wilkinson, J.; Hutson, J.; Bestland, E., & Fallowfield, H. (2005). Audit of contemporary and historical quality and quantity data of stormwater discharging into the marine environment, and field work programme. ACWS Technical Report No. 3. Prepared for the Adelaide Coastal Waters Study Steering Committee. Retrieved from Adelaide, South Australia:
Wilkinson, J.; Pearce, M.; Cromar, N., & Fallowfield, H. (2003). Audit of the quality and quantity of treated wastewater discharging from Wastewater Treatment Plants (WWTPs) to the marine environment. ACWS Technical Report No. 1. Prepared for the Adelaide Coastal Waters Study Steering Committee. Retrieved from Adelaide, South Australia:
Wilkinson, J.; White, N.; Smythe, L.; Hutson, J.; Bestland, E.; Simmons, C.; Lamontagne, S., & Fallowfield, H. (2005). Volumes of inputs, their concentrations and loads received by Adelaide metropolitan coastal waters. ACWS Technical Report No. 18. Prepared for the Adelaide Coastal Waters Study Steering Committee. Retrieved from Adelaide, South Australia:
Williams, S. L., & Heck, K. L., Jr. (2011). Seagrass community ecology. In M. D. Bertness, S. D. Gaines, & M. E. Hay (Eds.), Marine Community Ecology (pp. 317-337). Sunderland, MA (USA): Sinauer Associates, Inc.
Zhang, Q.; Alfarra, M. R.; Worsnop, D. R.; Allan, J. D.; Coe, H.; Canagaratna, M. R., & Jimenez, J. L. (2005). Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environmental Science & Technology, 39(13), 4938-4952.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-11-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-11-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw