進階搜尋


 
系統識別號 U0026-0809201700540700
論文名稱(中文) 具有共振磁場擾動在託卡馬克傳輸偏濾器拓撲效應的數值模擬
論文名稱(英文) Numerical simulation of divertor’s topological effects on tokamak transport with resonant magnetic perturbation
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 105
學期 2
出版年 106
研究生(中文) 呂建承
研究生(英文) Jian-Cheng Lu
學號 la6021129
學位類別 碩士
語文別 英文
論文頁數 85頁
口試委員 指導教授-西村泰太郎
口試委員-張博宇
口試委員-河森榮一郎
中文關鍵字 託卡馬克  偏濾器幾何  共振磁場擾動  邊緣局部化模式  轉向板 
英文關鍵字 Tokamak  Divertor geometry  Resonant magnetic perturbations  Edge Localized Modes  Divertor plates 
學科別分類
中文摘要 研究外部施加的隨機磁場對具有偏濾器幾何的託卡馬克等離子體傳輸的影響。共振磁場擾動可以增強粒子傳輸並消除邊緣局部化模式。當粒子穿過分界面時,粒子撞擊轉向板並可從系統中移除。這個過程不允許運輸擴散。
在數值模擬中,引導中心運動方程在通量座標和笛卡爾座標中得到了解決。採用封閉場線區域中的通量坐標系,因為它在模式有理面處的諧振的簡單性和正確的響應。笛卡爾座標系由於奇異點的特性而在粒子交叉分離時被應用於粒子運動。生成一個將座標系從一個對象轉換到另一個的映射工具。採用開發的指導中心軌道遵循程式,討論了全面性的密度演化和溫度演化,以及到達偏濾器板的粒子的能譜。
英文摘要 Effects of externally imposed stochastic magnetic field on plasma transport in tokamak with divertor geometry are investigated. Resonant magnetic perturbations (RMPs) can enhance particle transport and eliminate the Edge Localized Modes (ELMs). When particles cross the separatrix, particles hit the diverted plates and can be removed from the system. This process does not allow the transport to be diffusive.
In the numerical simulation, guiding center equation of motion is solved both in flux coordinates and Cartesian coordinates. The flux coordinates in the closed field line region are employed, because of its simplicity and correct response to the resonance at the mode rational surfaces. The Cartesian coordinate system is applied to particle motions when particles cross separatrix because of the singularity at the X-point. A mapping tool to transform the coordinate systems from one to the other is generated. Employing the developed guiding center orbit following code, the global density evolution and temperature evolution are discussed, as well as energy spectrum of the particles which reach the divertor plates.
論文目次 1. Introduction…………………………………………………………………………1
2. Magnetic structure of divertor geometry in tokamaks…………………………6
2.1 Magnetic field structure in flux coordinates………………………6
2.2 Duffing model ………………………………………………………………23
2.3 Magnetic field line equation of Duffing model in Cartesian coordinates…29
2.4 Coordinate transformation between Cartesian and flux coordinate system……32
3. Solution of guiding center equation of motion…………………………………38
3.1 Derivation of guiding center equation from Littlejohn’s Lagrangian…………38
3.2 Guiding center equation of motion in a flux coordinate system……………43
3.3 Guiding center equation of motion in a Cartesian coordinate system ……49
4. Computational results……………………………………………………………56
4.1 Single particle motion in closed field line region and open field line region in diverter geometry……………………………………………………………………56
4.2 Statistical analysis of multiple particle behavior in pseudo-toroidal geometry.............................62
4.3 Statistical analysis of multiple particle behavior in diverted tokamak geometry…………………………………………………………………………69
5. Summary…………………………………………………………………………81
Bibliography……………………………………………………………………………83

參考文獻 [1] F. Wagner, et al., "Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak, "Phys. Rev. Lett. 49, 1408 (1982).
[2] Y. Nishimura, D. Coster, and B. Scott, “Characterization of electrostatic turbulent fluxes in tokamak edge plasmas,” Phys. of Plasmas 11, 115 (2004).
[3] S. I. Itoh and K. Itoh, “Model of L- to H-Mode Transition in Tokamak,” Phys. Rev. Lett. 60, 22 (1988); P. H. Diamond, and Y. B. Kim, “Theory of mean poloidal flow generation by turbulence,” Phys. Fluids B 3, 7 (1991).
[4] T. W. Petrie, T. E. Evans, N. H. Brooks, et al., “Results from radiating divertor experiments with RMP ELM suppression and mitigation,” Nucl. Fusion 51, 073003 (2011).
[5] T. E. Evans, R. A. Moyer, K. H. Burrell, et al., “Edge stability and transport control with resonant magnetic perturbations in collisionless tokamak plasmas,” Nature Phys. 2, 419 (2006).
[6] T. E. Evans, R. A. Moyer, P. R. Thomas, et al., “Suppression of Large Edge-Localized Modes in High-Confinement DIII-D Plasmas with a Stochastic Magnetic Boundary, ” Phys. Rev. Lett. 92, 23 (2004).
[7] S. Abdullaev, Magnetic Stochasticity in Magnetically Confined Fusion Plasmas: Chaos of Field Lines and Charged Particle Dynamics, (Springer, Berlin, Germany, 2013), pp. 32-37.
[8] W. D. D'haeseleer, W. N. Hitchon, J. D. Callen, and J. L. Shohet, Flux coordinates and magnetic field structure: a guide to a fundamental tool of plasma theory, (Springer, Berlin, Germany, 2012), pp.100-112.
[9] R. G. Littlejohn, “Variational principles of guiding centre motion,” J. Plasma Phys. 29, 111 (1983).
[10] Y. Nishimura, Y. Xiao, and Z. Lin, “Guiding Center Orbit Studies in a Tokamak Edge Geometry Employing Boozer and Cartesian Coordinates,” Contrib. Plasma Phys. 48, 224 (2008).
[11] Y. Nishimura, B. Huang, and C.Z. Cheng, “Alpha particle transport in the presence of ballooning type electrostatic driftwaves,” Nucl. Fusion 55, 073016 (2015).
[12] O. Schmitz, T. E. Evans, M. E. Fenstermacher, et al., “Resonant features of energy and particle transport during application of resonant magnetic perturbation fields at TEXTOR and DIII-D,” Nucl. Fusion 52, 043005 (2012).
[13] J. Wesson, D. J. Campbell, Tokamaks, (Oxford University Press, Oxford, UK, 2011), p.812.
[14] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, 2nd ed. (Springer, Berlin, Germany, 1992), pp.169-191.
[15] C. C. Chang, Y. Nishimura, and C. Z. Cheng, “Guiding center orbit following calculation of edge particle and heat transport in stochastic magnetic field,” Contrib. Plasma Phys. 54, 479 (2014).
[16] D. R. Nicholson, Introduction to Plasma Theory, 2nd ed. (Kreiger, Malabar, 1992), pp. 3-33.
[17] B. V. Chirikov, “A universal instability of many-dimensional oscillator systems,” Phys. Rep. 52, 263 (1979).
[18] M. Soler and J. D. Callen, “On measuring the electron heat diffusion coefficient in a tokamak from sawtooth oscillation observations,” Nucl. Fusion 19, 703, (1979).
[19] H. Takahashi et al., "Observation of SOL current correlated with MHD activity in NBI heated DIII-D tokamak discharges," Nucl. Fusion 44, 1075, (2004).
[20] N. Metropolis et al., "Equation of state calculations by fast computing machines, "J. Chem. Phys 21, 6, (1953).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-09-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw