進階搜尋


下載電子全文  
系統識別號 U0026-0809201700105900
論文名稱(中文) 使用有限角度重建方法於降低錐狀射線電腦斷層掃瞄系統之輻射劑量
論文名稱(英文) Evaluation of Limited Angle Reconstruction Methods for Dose Reduction in Cone Beam Computed Tomography Systems
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 蘇楣
研究生(英文) May Su
學號 P86041095
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-方佑華
口試委員-陳家進
口試委員-王士豪
中文關鍵字 有限角度重建  錐狀射線電腦斷層掃瞄  降低輻射劑量 
英文關鍵字 Limited Angle Reconstruction  CBCT  Dose Reduction 
學科別分類
中文摘要 電腦斷層掃描(CT)在臨床上已是十分重要且運用廣泛的醫療診斷儀器,由CT延伸出來的錐狀射束電腦斷層掃描(CBCT)也廣泛普及的運用於顱面、四肢及牙科。降低CBCT輻射劑量仍是個重要的研究主題,許多研究致力於降低CBCT的輻射劑量,文獻中提到利用有限角度重建方法,可直接減少照射物所接收到的輻射劑量,而疊代重建演算法在有限角度方法中仍具有高品質影像的效果。目前雖然已有許多疊代的重建演算法,但未有研究客觀且完整地比較這些疊代演算法,本研究將比較在有限角度下,現在臨床上使用的非疊代及五種常見的疊代演算法,評估重建之影像品質。方法:我們使用X光機、偵檢器、馬達和工作站建立原型的CBCT系統,整合及控制三個硬體的控制軟體,並利用開放軟體基於GPU加速斷層掃描重建涵式庫 (TIGRE)中的非疊代演算法及疊代演算法,將收到的投影資料重建出來,使用CT仿體和沙氏變色蜥樣本這兩種拍攝物體,之後利用對比訊號比(CNR)、訊號雜訊比(SNR)、通用性影像品質指標(UQI)、均方根誤差(RMSE)及半高全寬(FWHM)做為影像品質評估的標準,比較及評估各演算法的結果。結果:以冠狀及水平切面來評估重建出的結果,不管是以肉眼判斷或是以上述的參數去評估,MLEM、OS-SART和OSC-TV這三種在有限角度的狀況下還是有保持住一定的影像品質,相較FDK有明顯的改進,在仿體結果中,以CNR及SNR的平均值為例,由較好到較差的排序為OS-SART、OSC-TV、MLEM;在沙氏變色蜥樣本的結果中,CNR跟SNR的平均值由較好到較差的依序是OSC-TV、MLEM和OS-SART,結論:在本研究所評估的疊代演算法中,MLEM、OS-SART和OSC-TV這三種演算法表現較好,由於他們的性能會因拍攝物的不同造成差異,在重建演算法的選擇上會因拍攝物的不同而改變且須進一步研究,本研究可提供未來研究上,測試與評估疊代重建架構於CBCT系統之效果。
英文摘要 Computed tomography (CT) is already an indispensable tool and widely applied in clinical diagnosis, so is cone beam computed tomography (CBCT) in maxillofacial, limb and dental applications. Radiation dose reduction of CBCT remains to be an active topic of research. In the literature, image reconstruction with limited angles can directly reduce the radiation dose, and the iterative reconstruction algorithms have superior performance on limited angles reconstruction. Although there are many kinds of iterative reconstruction algorithms, there is no systematic and objective comparison of these iterative reconstruction algorithms. In this work, we compared five common iterative reconstruction algorithms to the non-iterative algorithm, the L. A. Feldkamp, L. C. Davis, and J. W. Kress (FDK) algorithm, which is common in clinical use, to evaluate which iterative reconstruction method is preferred in limited angle reconstruction. Methods: To set up a prototype CBCT system, we integrated three hardware components: X-ray tube, flat-panel detector and a motor with in-house controlling software. Acquired projection data were used to reconstruct image volumes with tomographic iterative GPU-based reconstruction toolbox (TIGRE), an open source toolbox of various image reconstruction methods. A micro-CT bar pattern phantom and anolis sagrei cadaver were used as irradiated objects. We analyzed the reconstructed images with image quality criteria of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), universal quality Index (UQI ), root mean of the squared error (RMSE) and full width at half maximum (FWHM). Results: Inspecting the coronal and sagittal planes of the reconstructed results, MLEM, OS-SART and OSC-TV were able to maintain a good image quality with limited angle reconstruction. In the micro-CT bar pattern phantom results, the top three best-performing algorithms are OS-SART, OSC-TV, and MLEM. In the anolis sagrei cadaver results, the best algorithms are OSC-TV, MLEM, and OS-SART. Conclusion: In the iterative reconstruction algorithms tested, MLEM, OS-SART and OSC-TV have superior performance than other algorithms. Since their performances in image quality vary between imaged objects, the choice of reconstruction algorithm may be task-dependent and requires further investigation. This study provides future studies with a framework of testing and evaluation for determining the ideal iterative reconstruction method in the CBCT system development.
論文目次 Chapter 1 Overview 1
Chapter 2 Literature Survey 3
2.1 Background of CBCT 3
2.2 Radiation dose 6
2.3 Image reconstruction in CBCT 7
2.4 Limited angle reconstruction under limited angle reconstruction 11
2.5 Evaluation of image quality 14
2.6 Specific aims 16
Chapter 3 Materials and Methods 19
3.1 Prototype CBCT system 19
3.1.1 Hardware 20
3.1.2 Controlling Software 24
3.2 Reconstruction algorithms 26
3.2.1 FDK 28
3.2.2 Gradient descend-based 29
3.2.3 Total variation regularization 32
3.2.4 Maximum likelihood expectation–maximization algorithm 35
3.3 limited angle reconstruction 36
3.4 Evaluation of image quality 37
Chapter 4 Results 41
4.1 CBCT system 41
4.1.2 Hardware Setting 41
4.1.2 Controlling Software 42
4.2 Experiment 45
4.2.1 micro-CT bar pattern phantom results 47
4.2.2 Anolis sagrei cadaver results 56
Chapter 5 Discussion 66
Chapter 6 Conclusion 67
References 69
參考文獻 JA, S. and B. JM, X-ray imaging physics for nuclear medicine technologists part 2: x-ray interactions and image formation. J Nucl Med Technol.: p. 33:3–18, 2005.
2. The Nobel Prize in Physiology or Medicine 1979 : Allan M. Cormack, Godfrey N. Hounsfield. 1979.
3. Scarfe, W.C. and A.G. Farman, What is Cone-Beam CT and How Does it Work? 2008.
4. Cone-Beam CT dental units to drive growth in global dental X-ray market. 2015.
5. 葉哲政, 金., 全球牙科醫材市場分析與廠商經營動態分析. 2014.
6. Research, Z.M. Global Cone Beam Computed Tomography Market Set for Rapid Growth to Reach around USD 841.0 Million by 2021. 17-Nov-2016; Available from: https://www.zionmarketresearch.com/news/global-cone-beam-computed-tomography-market.
7. What are the Radiation Risks from CT? 2016.
8. Serota, D.K., DDS, and MMSc. Cone Beam Computed Tomography: How safe is CBCT for your patients? ; Available from: http://www.dentaleconomics.com/articles/print/volume-101/issue-1/features/cone-beam-computed-tomography-how-safe-is-cbct-for-your-paitents.html.
9. Feldkamp, L.A., L.C. Davis, and J.W. Kress, Practical cone-beam algorithm. Optical Society of America., vol.AI, p.612-619, 1984.
10. SJ, L., S. EY, and P. X, Accurate image reconstruction from few-view and limited-angle data in diffraction tomography. 2008.
11. Sidky, E.Y., C.-M. Kao, and X. Pan, Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. 5841 S. Maryland Ave.,Chicago IL, 60637: p. 30., 2009.
12. EY, S., D. Y, and P. X, A constrained, total-variation minimization algorithm for low-intensity x-ray CT. 2011.
13. D, M., G.Y. s, and D. P, GPU-accelerated regularized iterative reconstruction for few-view cone beam CT. Med. Phys, 2015.
14. Jia X, J., et al., GPU-based fast low-dose cone beam CT reconstruction via total variation. J. X-Ray Sci. Technol, 2011.
15. Sidky, E.Y. and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol. 2008 Sep 7; 53(17): 4777–4807., 2008.
16. H, X., et al., An improved TV minimization algorithm for incomplete data problem in computer tomography. 2010 IEEE Nuclear Science Symp, Conf. Record (NSS/MIC) pp 2621–4, 2010.
17. Lange, K. and R. Carson, EM Reconstruction Algorithms for Emission and Transmission Tomography Compuler Assisted Tomography. J. Comp. Assisted Tomography, vol. 8, no. 2: p. 306-316, 1984.
18. Dong, B.-Y., Image reconstruction using EM method in X-ray CT. Wavelet Analysis and Pattern Recognition, vol. 1: p .130-134, 2007.
19. Shepp, L.A. and Y. Vardi, Maximum Likelihood Reconstruction for Emission Tomography. IEEE Transactions on Medical Imaging. 1(2): p. 113-122., 1982.
20. Biguri1, A., et al., TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction. 2016.
21. Bian, J., et al., Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT. Phys. Med. Biol, 55 6575-99,2010.
22. Han, X., J. Bian, and D.R. Eaker, Algorithm-Enabled Low-Dose Micro-CT Imaging. IEEE TMI., 2011.
23. Pan1, X., E.Y. Sidky, and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse problems, 25:1230009, 2009.
24. Wernick, M.N. and J.N. Aarsvold, Emission Tomography : The Fundamentals of PET and SPECT. p. 443-472., 2004.
25. Waard, J.d., Image reconstruction methods for emission based tomography. . Master thesis. Faculty of Science, Utrecht University; 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-09-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw