進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0809201611414400
論文名稱(中文) 電動機車故障之預測與診斷系統
論文名稱(英文) Prediction and Diagnosis System for Malfunctions of Electric Scooters
校院名稱 成功大學
系所名稱(中) 系統及船舶機電工程學系
系所名稱(英) Department of Systems and Naval Mechatronic Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 汪聖翔
研究生(英文) Shengh-Siang Wang
學號 P16031240
學位類別 碩士
語文別 英文
論文頁數 56頁
口試委員 指導教授-邵揮洲
口試委員-沈聖智
口試委員-吳重雄
口試委員-蔡進發
中文關鍵字 電動機車  振動量測  故障診斷 
英文關鍵字 Electric Scooter  Vibration Measurement  Malfunction Diagnosis 
學科別分類
中文摘要 電動機車運轉時會產生振動,長時間的振動會造成結構的疲勞損壞,而結構的振動資訊經常被用來判斷結構的狀態,因為不同結構的振動會有不同的振動模態。因此本文主要在設計一套電動機車的故障預測診斷系統,利用振動資訊快速檢測電動機車的狀態及預測可能發生之故障狀態。
本研究整合加速度規、訊號擷取模組及LabVIEW發展量測診斷系統,利用電動機車的振動訊號來診斷預測可能發生的故障問題,在檢測診斷之前需先找到特徵判別資訊,利用頻域、倍頻分析及統計方法找出到各種狀態之頻率特徵。本文針對馬達軸螺絲鬆脫、前輪軸螺絲鬆脫、避震器異常等故障狀態來做故障判別,依據狀態頻率特徵所找到的故障判別資訊,判斷電動機車是否含有故障訊號的特徵並告知故障類型,以達到預測診斷效果。
經由實驗結果顯示,診斷正常狀態下的準確率為93.33%、馬達軸螺絲鬆脫狀態的準確率95.56%、前輪軸螺絲鬆脫狀態的準確率90.56%及避震器異常狀態準確率為87.8%。就此結果而言,將狀態頻率特徵判斷應用在電動機車診斷上,可以有效診斷電動機車的狀態及故障種類。
英文摘要 Information on structural vibration are usually utilized to judge its status. Because, vibration on different structural will cause different vibration modes, even small differences. Electric scooter used in the process, the structural is likely to damage due to vibration fatigue. So, this research mainly focuses on designing a malfunction-predicting system for electric scooter in order to detect status of the electric scooter quickly and foresee a malfunction that may happen in the future.
An accelerometer and data acquisition module and LabVIEW are integrated to develop a measurement and diagnosis system in this thesis. By utilizing vibration signals from the electric scooter to diagnose the possible malfunction, before diagnosing, features are needed for identifying information. Frequency domain information, frequency multiplication analysis, and statistics are used to detect a certain status’s vibrational features. This thesis aims to address the screw problem of the motor shaft and front axle, shock absorber abnormalities, etc. The malfunction status is used to identify the fault based on the status frequency feature for locating the fault and identifying the information. Furthermore, it is evaluated whether the electric scooter has the malfunction signal feature to determine the type of fault in order to achieve a predictive diagnosis.
The experiment shows that the diagnostic accuracy of normal status is 93.33%, a loose screw in the motor shaft has 95.56%, a loose screw in the front axle has 90.56%, and a shock absorber abnormality has 87.8%. The results show that the frequency feature can effectively diagnose the status of an electric scooter.
論文目次 Abstract in Chinese..........................i
Abstract ....................................ii
Acknowledgement..............................iv
Table of Contents............................v
List of Figures..............................vii
List of Table................................xi
Chapter 1. Introduction......................1
1.1 Foreword.................................1
1.2 Motivation and Purpose...................2
1.3 Research Method..........................3
Chapter 2. Discussion on Scooter Vibration Measurement and Malfunction Diagnosis........................5
2.1 The Hazard and Design Specifications of Scooter
Vibration................................5
2.2 Vibration Measurement and Analysis.......6
2.3 Malfunction Diagnosis....................8
Chapter 3. Data Acquisition and Analysis.....10
3.1 Experiment Equipment.....................10
3.1.1 Introduction of Accelerometer..........10
3.1.2 Data Acquisition Card..................12
3.2 System Design............................14
3.2.1 Vibration Signal Acquisition and Analysis
.......................................14
3.2.2 Verifying the Correctness of the Measurement System
.......................................18
3.2.3 Method for Designing Human Interface...20
Chapter 4. Design of Prediction and Diagnosis System
..................................22
4.1 Parameter Setting........................22
4.2 Design of Diagnosis System...............28
4.2.1 Features of Handle Position Status.....29
4.2.2 Features of Motor Position Status......34
4.2.3 Features of Step Position Status.......39
4.2.4 Features of Seat Position Status.......44
Chapter 5. Results and Discussion............49
Chapter 6. Conclusion........................53
6.1 Conclusion...............................53
6.2 Suggestions .............................53
References ..................................54
參考文獻 [1] Environmental Protection Administration Executive Yuan, R.O.C(Taiwan), air emissions inventory, Retrieved July 3, 2016, from http://teds.epa.gov.tw/new_main2-0-1.htm.
[2] Directorate General of Highways, Ministry of Transportation and Communications R.O.C, Number of Registered Motor Vehicles - Grand Total, Retrieved July 1, 2016, from http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301.
[3] Chang, M.K., Lu, S.Y.(2008), “Review of Whole Body Vibration Exposure Evaluation”, Journal of Occupational Safety and Health, Vol.16, No.2, pp.152-163.
[4] Dong, S., Zhu, Y.Q.(2004), “Effects of Environmental Vibration on Man”, Noise and Vibration Control, Vol.3, pp.5-9.
[5] Mechanical vibration and shock Evaluation of human exposure to whole-body vibration, ISO2631-1(1997).
[6] Pan, Y.T., Lin, G.Y., Liu, J.J., Chen, H.C., Lu, S.Y.(2010), “Study on Risk Assessment of Whole-Body Vibration Exposure”, Annual Meeting and 22nd Symposium of Acoustical Society of the Republic of China, pp.60-71.
[7] Oh, J.E., Huh, Y., Ahn, J.,C.Y.(1994), “Identification of Vibration-Induced Noise Radiated from Compressor shell”, International Compressor Engineering Conference, pp. 990.
[8] Hsu, L.Y.(2011), Vehicle Dynamics Estimation and Prediction Systems, Doctoral Dissertation, Department of Mechanical Engineering, National Chiao Tung University.
[9] Wang, B.T., Wang, W.C., Wang, T.W., Huang, C.S. (2013), “Machinery Noise Measurement and Diagnosis Customized Procedure: Application to Twin Screw Compressor”, National Conference on Sound and Vibration, 21th, pp.57-64.
[10] Lin, H.Y.(2008), Measurement System and Quantitative Analysis of Total Body Vibration in Humans, Master’s Thesis, Department of Electrical Engineering, National Cheng Kung University.
[11] Lu, Y.J.(2010), Finite Element Harmonic Analysis of Motorcycle Structure and Application, Master’s Thesis, Department of Mechanical Engineering, National Cheng Kung University.
[12] Hung, S.H.(2008),A Vibrational Type Fast Damage Diagnosis Technique for Beam Element, Master’s Thesis, Department of Civil Engineering, National Central University.
[13] Chou, I.W., Wang, J.E.(1998), “Vibration Measurement, Cause Analysis, Defects Diagnosis and Health Monitoring of Machine Tools”, The Proceedings of National Conference on the Society of Sound and Vibration, 6th, pp.79-88.
[14] Chang, W.K., Li, W.F., Mei, H.T., Chen, C.H.(2011), “Structural Health Monitoring and Damage Diagnosis”, Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol.38, No.3, pp.17-25.
[15] Li, W.L., Chiu, H.(2011), “A study on diagnosing looseness of bridge structure using vibration signals”, National Conference on Sound and Vibration, 19th, pp.1-7.
[16] Wang, J.E., Liu, J.H.(2010), “Failure Mode Analysis and Diagnostics of Large Wind Turbine Systems”, Industrial Machinery Magazine, Vol.331, No.10, pp.26-32.
[17] 林士凱、林汎褀、高烱鐘(2013),虛擬儀控程式設計:LabVIEW 201X,新北市:高立圖書有限公司。
[18] Anderson, D.R., Sweeney, D.J., Williams, T.A., Camm, .J.D., Cochran, J.J. (2014), Statistic for Business and Economics, 12e, South-Western: Cengage Learning.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw