進階搜尋


下載電子全文  
系統識別號 U0026-0809201019182400
論文名稱(中文) 溫故而知新:以逐漸理解資訊之過程實現情報式網頁搜尋
論文名稱(英文) From Experience to Expertise: Digesting Cumulative Information for Informational Web Search
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 98
學期 2
出版年 99
研究生(中文) 柳岳岑
研究生(英文) Yue-Cen Liu
學號 N9697115
學位類別 碩士
語文別 英文
論文頁數 48頁
口試委員 指導教授-鄧維光
口試委員-侯廷偉
口試委員-胡誌麟
口試委員-楊政達
中文關鍵字 人機互動介面  網頁搜尋  網頁搜尋結果  瀏覽記錄 
英文關鍵字 interactive interface  web search  web search results  browse log 
學科別分類
中文摘要 使用者利用搜尋引擎快速蒐集想要的資訊已經是非常普遍的方式。當在進行情報式網頁搜尋時,目的是要去了解或學習一項知識,如果知識是較為複雜抑或使用者不熟悉之領域,搜尋的過程可能效率不彰。為了幫助使用者有效率地進行情報式網頁搜尋,在觀察使用者進行了解知識的過程中,一個重點是使用者所獲取的資訊線索會不斷累積,例如:一個使用者可藉由獲取了“分散式計算”、“Google App Engine”、“Amazon EC2”等相關的資訊,而逐漸理解 “雲端計算” 此一概念。現有的搜尋引擎沒有辦法根據使用者累積的資訊立即反應使用者對於資訊的喜好程度,導致使用者必頇檢查大量的搜尋結果從中找出當下最合適的網頁。我們因此提出一個指標去反映對搜尋結果使用者當下感興趣的程度。進行情報式網頁搜尋的過程經常使用大量的關鍵字探索不同的主題。然而,使用者對於不同主題感興趣的程度也隨著資訊累積的過程而有改變。除此之外,主題之間的關聯性也被進一步地討論,在過去的研究中,我們已經可以達到不同主題之間關聯性的判斷,幫助使用者快速的了解哪些主題有無關聯。然而,對於有關聯主題之影響還沒有被討論。具體而言,有關聯的主題之間相同的內容很有可能彼此相互存在,所以當使用者了解了某個主題的部分內容,對於其他關聯的主題也能有一定程度的了解。我們設計的系統綜合以上的概念,利用使用者探索知識的過程中不斷累積的網頁資訊,從中探索使用者當下的興趣,並且以視覺的形式反映在搜尋結果中。對於主題感興趣的程度以及主題之間的關聯性也以一個地圖瀏覽的方式立即的反應。經由實驗案例的探討,發現對於幾個複雜的搜尋議題能有較顯著的功效。
英文摘要 It is common that users collect desired information by search engines. When an informational web search is performed, users want to understand and learn the particular knowledge. It is difficult to reach the search requirement if the knowledge is unfamiliar to the user or the informational task is complicated. Some efforts are required to browse and to understand the web pages contained in the corresponding search result. In such an informational web search, it is noted that information cues are cumulated as the user reads more and more web pages to approach the search target. For example, the term “cloud computing” can be gradually understood after the user obtains some information of relevant topics, e.g., distributed computing, Google App Engine, Amazon EC2. In this work, an indicator, i.e., immediacy of interest, is proposed to evaluate the possible user interest toward a web page contained in the search result. Moreover, to address the relevance among search sessions, the topic map is also utilized in our proposed scheme. Empirical studies show that tasks of informational web search can be completed efficiently and effectively with our approach.
論文目次 Chapter 1 Introduction ............................................................................ 1
1.1 Motivation and Overview ................................................................... 1
1.2 Contributions of the Thesis .............................................................. 2
Chapter 2 Preliminaries .......................................................................... 4
2.1 User Behavior in Web Search .......................................................... 4
2.2 Enhancing Cues for Identifying Distal Pages .......................................... 6
2.2.1 Adding Visual Information by Thumbnails .......................................... 7
2.2.2 Highlighting Hyperlinks for Further Pages........................................... 8
2.2.3 Providing an Overview of Web Structure ............................................. 9
2.3 Improvements for Presenting Search Results ...................................... 10
2.3.1 Organizing Search Results ........................................................... 11
2.3.2 Visualization for Personal History ..................................................... 15
Chapter 3 Realizing User Cognition during a Search Session ...................... 17
3.1 Cumulative Information during Informational Web Search ...................... 17
3.1.1 A Usual Case in Our Daily Life ......................................................... 18
3.1.2 Inspiration from Cumulative Information .............................................. 20
3.2 Reflecting the Change of User Cognition ....................................... 20
3.3 Identifying the Relevance among Search Sessions ............................... 24
Chapter 4 Empirical Studies .............................................................. 28
4.1 Proposed Scheme and Prototyping................................................. 28
4.2 Evaluation Results ........................................................................ 32
Chapter 5 Conclusions and Future Works ............................................. 41
Bibliography ....................................................................................... 43
參考文獻 [1] M. Bates, “The Design of Browsing and Berrypicking Techniques for the Online Search Interface,” Online Review, 13(5):407-424, October 1989.
[2] P. Baudisch, B. Lee, and L. Hanna, “Fishnet, a Fisheye Web Browser with Search Term Popouts: a Comparative Evaluation with Overview and Linear View,” Proceedings of the Working Conference on Advanced Visual Interfaces, pages 133-140, Gallipoli, Italy, May 2004.
[3] A. Broder, “A Taxonomy of Web Search,” SIGIR Forum, 36(2):3-10, June 2002.
[4] Carrot2, http://search.carrot2.org/
[5] T.-W. Chen, P.-L. Chang, and W.-G. Teng, “Supporting Informational Web Search with Interactive Explorations,” Proceedings of the 4th IEEE International Conference on Signal-Image Technology and Internet-based Systems, pages 153-160, November 30-December 3 2008.
[6] W.-L. Chen and W.-G. Teng, “Exploiting Browsing History for Exploratory Search,” Proceedings of the 13th International Conference on Human-Computer Interaction (LNCS 5617), pages 355-364, San Diego, CA, July 2009.
[7] E. H. Chi, P. Pirolli, K. Chen, and J. Pitkow, “Using Information Scent to Model User Information Needs and Actions and the Web,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 490-497, Seattle, Washington, United States, March 31- April 5 2001.
[8] DeeperWeb, http://www.deeperweb.com/
[9] S. Dziadosz and R. Chandrasekar, “Do Thumbnail Previews Help Users Make Better Relevance Decisions about Web Search Results?” Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 365-366, Tampere, Finland, August 2002.
[10] R. Gandhi, G. Kumar, B. Bederson, and B. Shneiderman, “Domain Name Based Visualization of Web Histories in a Zoomable User Interface,” Proceedings of the 11th International Workshop on Database and Expert Systems Applications, pages 591-598, March 2000.
[11] D. Geer, “Is It Really Time for Real-Time Search?” Computer, pages 16-19, March 2010.
[12] E. D. Giacomo, W. Didimo, L. Grilli, G. Liotta, and P. Palladino, “WhatsOnWeb+: An Enhanced Visual Search Clustering Engine,” Proceedings of the IEEE PacificVis 2008, pages 167-174, March 2008.
[13] Google AJAX Search API, http://code.google.com/intl/en/apis/ajaxsearch/
[14] Google Web History, http://www.google.com/history/
[15] iBoogie, http://www.iboogie.tv/
[16] B. J. Jansen, D. L. Booth, and A. Spink, “Determining the Informational, Navigational, and Transactional Intent of Web Queries,” Information Processing and Management: an International Journal, 44(3):1251-1266, May 2008.
[17] T. Joachims, D. Freitag, and T. Mitchell, “WebWatcher: A Tour Guide for the World Wide Web,” Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages 770-777, August 1997.
[18] H. Lam and P. Baudisch, “Summary Thumbnails: Readable Overviews for Small Screen Web Browsers,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 681-690, Portland, Oregon, USA, April 2005.
[19] J. Lamping, R. Rao, and P. Pirolli, “A Focus+Context Technique based on Hyperbolic Geometry for Visualizing Large Hierarchies,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 401-408, Denver, Colorado, United States, May 1995.
[20] M. Levene and G. Loizou, “Web Interaction and the Navigation Problem in Hypertext,” Encyclopedia of Microcomputers, 28(7):381-398, 2001.
[21] D. A. Nation, “WebTOC: a Tool to Visualize and Quantify Web Sites Using a Hierarchical Table of Contents Browser,” Proceedings of Conference on Human Factors in Computing Systems, April 1998.
[22] C. Olston and E. H. Chi, “ScentTrails: Integrating Browsing and Searching on the Web,” ACM Transactions on Computer-Human Interaction (TOCHI), 10(3):177-197, September 2003.
[23] S. Osinski, J. Stefanowski, and D. Weiss, “Lingo: Search Results Clustering Algorithm based on Singular Value Decomposition,” Proceedings of the International IIS: Intelligent Information Processing and Web Mining Conference, pages 359-368, 2004.
[24] P. Pirolli, “Information Foraging Theory: Adaptive Interaction with Information” Oxford University Press, April 2007.
[25] P. Pirolli, S. K. Card, and M. M. V. D. Wege, “The Effects of Information Scent on Visual Search in the Hyperbolic Tree Browser,” ACM Transactions on Computer-Human Interaction (TOCHI), 10(1):20-53, March 2003.
[26] D. E. Rose and D. Levinson, “Understanding User Goals in Web Search,” Proceedings of the 13th International Conference on World Wide Web, pages 13-19, New York, NY, USA, May 2004.
[27] G. Salton and C. Buckley, “Term-weighting Approaches in Automatic Text Retrieval,” Information Processing and Management, 24(5):513-523, 1988.
[28] Simple Chinese Words Segmentation (SCWS), http://www.ftphp.com/scws/index.php
[29] Stanford Part-Of-Speech Tagger, http://nlp.stanford.edu/software/tagger.shtml
[30] B. Suh, A. Woodruff, R. Rosenholtz, and A. Glass, “Popout Prism: Adding Perceptual Principles to Overview+Detail Document Interfaces,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Changing Our World, Changing Ourselves, pages 251-258, Minneapolis, Minnesota, USA, April 2002.
[31] J. Teevan, “The Re:Search Engine: Simultaneous Support for Finding and Re-Finding,” Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, pages 23-32, Newport, Rhode Island, USA, October 2007.
[32] J. Teevan, E. Cutrell, D. Fisher, S. M. Drucker, G. Ramos, P. André, and C. Hu, “Visual Snippets: Summarizing Web Pages for Search and Revisitation,” Proceedings of the 27th International Conference on Human Factors in Computing Systems, pages 2023-2032, Boston, MA, USA, April 2009.
[33] M. Tomsa and M. Bieliková, “Hyperlinks Visualization Using Social Bookmarking,” Proceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia, pages 245-246, Pittsburgh, PA, USA, June 2008.
[34] TouchGraph Google Browser, http://www.touchgraph.com/TGGoogleBrowser.html
[35] WebClust, http://www.webclust.com/
[36] H. Weinreich and W. Lamersdorf, “Concepts for Improved Visualization of Web Link Attributes,” Computer Networks: The International Journal of Computer and Telecommunications Networking, 33(1-6):403-416, June 2000.
[37] A. Woodruff, A. Faulring, R. Rosenholtz, J. Morrsion, and P. Pirolli, “Using Thumbnails to Search the Web,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 198-205, Seattle, Washington, United States, March 2001.
[38] X. Xie, G. Miao, R. Song, J.-R. Wen, and W.-Y. Ma, “Efficient Browsing of Web Search Results on Mobile Devices Based on Block Importance Model,” Proceedings of the Third IEEE International Conference on Pervasive Computing and Communications, pages 17-26, March 2005.
[39] Yippy, http://www.yippy.com/
[40] O. Zamir and O. Etzioni, “Web Document Clustering: A Feasibility Demonstration,” Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 46-54, Melbourne, Australia, August 1998.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-09-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-09-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw