系統識別號 U0026-0809201013483800
論文名稱(中文) 以動態及靜態視動協調作業探討不同年齡之手眼協調能力差異
論文名稱(英文) Age-related changes of eye-hand coordination using static and dynamic tasks
校院名稱 成功大學
系所名稱(中) 認知科學研究所
系所名稱(英) Institute of Cognitive Science
學年度 98
學期 2
出版年 99
研究生(中文) 張惠娟
研究生(英文) Hui-Chuang Chang
學號 u7697104
學位類別 碩士
語文別 中文
論文頁數 92頁
口試委員 口試委員-謝淑蘭
中文關鍵字 視動協調  手眼協調  目標捕獲作業  動作表現  軌跡 
英文關鍵字 eye-hand coordination  visuomotor ability  motor performance  trajectory 
中文摘要 視動協調能力在人類日常生活事件執行上扮演相當重要的角色,而手眼協調能力是從小時發展到成熟,然後隨著年齡增長則能力會逐漸變差。過去研究主要探討正常人在單一實驗場景中的表現,對於不同年齡層在不同手眼協調作業中的表現差異則較少著墨。本研究探討不同年齡層受試者在一維靜態、一維動態、二維靜態與二維迷宮場景等四種作業之手眼協調表現。結果發現在數字符號替代測驗表現佳的年輕受試者在這四種作業的反應時間、動作時間表現顯著比其他族群還要好,藉由軌跡變異性的分析,發現可用基本動作控制能力、最大速度以及次動作數量三個方式來評估其動作能力的表現。進一步從上述實驗結果中發現,約有20%的年輕人及老人在斜直角座標系有特殊的軌跡表現。因此,想了解給予視覺線索是否有助於動作表現。結果發現給予路徑提示的動作時間較短,並利用上述實驗結果推測可用最大速度及次動作數量評估動作表現,發現有路徑提示可顯著增加年輕人及老年人的最大速度,而有更多時間利用視覺訊息進行動作調整,使次動作數量顯著增加。本實驗發展新式多變數的視動協調作業彌補一般紙本測驗評估不足,可了解實際動作表現的特徵後給予適當訓練,且給予視覺線索發現可明顯改善動作表現。因此,未來可利用此方法應用在手眼訓練的相關訓練上。
英文摘要 Eye-hand coordination, such as grasping an object or writing, is importantly and frequently used in our daily life. Previous studies, which emphasize on static condition in multiple dimensions, have indicated an age-dependent change existing in numerous visuomotor performance. However, age-dependent alteration in static and dynamic tasks remains largely unknown. In this study, two static tasks in 1D and 2D space and one dynamic task in 1D space were carried out in three age groups, i.e., preschool children, college students and elders. And we found that participants who have high score of digit symbol substitution test (DSST), related to visuomotor processing ability, performed better reaction time (RT) and movement time (MT). In general, college students showed best performance in terms of accuracy, reaction time (RT), movement time (MT), trajectory performance, peak velocity, and time to peak velocity in all tasks. In the analysis of trajectory, college student performed smoother pathway and the endpoints are more convergent. According to the result of trajectory variability, we thought visuomotor ability could be assessed through peak velocity (PV), time to peak velocity (time to PV), and the amount of submovement. And we have another task is to give additional visual cue to know whether the cue would benefit the trajectory performance. The results show that PV and the amount of submovement significantly increased, and both time to PV and MT decreased. Our findings indicate that age affects the visuomotor performance of both static and dynamic tasks in different ways. And giving additional visual cue may improve the motor performance.
論文目次 摘要 I
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
CHAPTER 1 緒論- 1 -
1.1 手眼協調能力- 1 -
1.2 費茲定律(FITTS’ LAW)- 3 -
1.3 一般常見之視動協調作業- 5 -
1.4 發展或老化過程中手眼協調能力的改變- 6 -
1.5 研究目的與實驗假設- 7 -
CHAPTER 2 實驗一- 9 -
研究方法- 9 -
2.1 研究對象- 9 -
2.2 研究器材- 10 -
2.3 研究工具- 10 -
2.4 研究流程- 17 -
2.5 資料分析- 17 -
CHAPTER 3結果 (實驗ㄧ)- 21 -
3.1 受試者基本資料及問卷結果分析- 21 -
3.2 電腦程式執行結果分析- 21 -
3.3 結論- 28 -
CHAPTER 4 實驗二- 29 -
研究方法- 29 -
4.1 研究對象- 29 -
4.2 研究器材- 30 -
4.3 研究工具- 30 -
4.4 研究流程- 31 -
CHAPTER 5 結果 (實驗二)- 32 -
5.1 受試者基本資料及問卷結果分析- 32 -
5.2電腦程式執行結果分析- 32 -
5.3 結論- 33 -
CHAPTER 6 討論- 34 -
總結- 36 -
CHAPTER 7 未來工作- 37 -
參考文獻- 38 -
附錄- 83 -
參考文獻 Bekkering, H., & Sailer, U. (2002). Commentary: coordination of eye and hand in time and space. Progress in Brain Research, 140, 365-373.
Bootsma, R., Marteniuk, R., MacKenzie, C., & Zaal, F. (1994). The speed-accuracy trade-off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics. Experimental Brain Research, 98(3), 535-541.
Brebner, J., & Welford, A. (1980). Introduction: an historical background sketch. Reaction Times, 1–23.
Brogmus, G. (1991). Effects of age and sex on speed and accuracy of hand movements: and the refinements they suggest for fitts law

Brouwer, A., Brenner, E., & Smeets, J. (2002). Hitting moving objects: is target speed used in guiding the hand? Experimental Brain Research, 143(2), 198-211.
Brouwer, A., Smeets, J., & Brenner, E. (2005). Hitting moving targets: effects of target speed and dimensions on movement time. Experimental Brain Research, 165(1), 28-36.
Desmurget, M., Gaveau, V., Vindras, P., Turner, R., Broussolle, E., & Thobois, S. (2004). On-line motor control in patients with Parkinson's disease. Brain, 127(8), 1755-1773.
Etnier, J., & Landers, D. (1998). Motor performance and motor learning as a function of age and fitness. Research Quarterly for Exercise and Sport, 69(2), 136-146.
Fitts, P. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381-391.
Fitts, P. (1966). Cognitive aspects of information processing: III. Set for speed versus accuracy. Journal of Experimental Psychology, 71(6), 849-857.
Fleury, M., Basset, F., Bard, C., & Teasdale, N. (1998). Target speed alone influences the latency and temporal accuracy of interceptive action. Canadian Journal of Experimental Psychology, 52(2), 84-92.
Goodbody, S., & Wolpert, D. (1998). Temporal and amplitude generalization in motor learning. Journal of Neurophysiology, 79(4), 1825-1838.
Gorbet, D., Richard Staines, W., & Sergio, L. (2004). Brain mechanisms for preparing increasingly complex sensory to motor transformations. Neuroimage, 23(3), 1100-1111.
Hoffmann, E. (1991). Capture of moving targets: A modification of Fitts' law. Ergonomics, 34(2), 211-220.
Inzelberg, R., Schechtman, E., & Hocherman, S. (2008). Visuo-motor coordination deficits and motor impairments in Parkinson's disease. PLoS ONE, 3(11).
Jagacinski, R., Repperger, D., Ward, S., & Moran, M. (1980). A test of Fitts' law with moving targets. Human Factors: The Journal of the Human Factors and Ergonomics Society, 22(2), 225-233.
Ketcham, C., Seidler, R., Van Gemmert, A., & Stelmach, G. (2002). Age-related kinematic differences as influenced by task difficulty, target size, and movement amplitude. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 57(1), 54-64.
Krampe, R. (2002). Aging, expertise and fine motor movement. Neuroscience & Biobehavioral Reviews, 26(7), 769-776.
MacKenzie, I. (1992). Fitts' law as a research and design tool in human-computer interaction. Human-Computer Interaction, 7(1), 91-139.
MacKenzie, I. (1995). Movement time prediction in human-computer interfaces. Readings in Human-Computer Interaction, 2, 483–493.
MacKenzie, I., & Buxton, W. (1992). Extending Fitts' law to two-dimensional tasks.
MacKenzie, I., Sellen, A., & Buxton, W. (1991). A comparison of input devices in element pointing and dragging tasks.
Morgan, M., Phillips, J., Bradshaw, J., Mattingley, J., Iansek, R., & Bradshaw, J. (1994). Age-related motor slowness: simply strategic? The Journal of Gerontology, 49(3), 133-139.
Mottet, D., Bootsma, R., Guiard, Y., & Laurent, M. (1994). Fitts' law in two-dimensional task space. Experimental Brain Research, 100(1), 144-148.
Plamondon, R., & Alimi, A. (1997). Speed/accuracy trade-offs in target-directed movements. Behavioral and Brain Sciences, 20(02), 279-303.
Radach, R., & Heller, D. (2000). Relations between spatial and temporal aspects of eye movement control. Reading as a Perceptual Process, 165-191.
Sailer, U., Eggert, T., Ditterich, J., & Straube, A. (2000). Spatial and temporal aspects of eye-hand coordination across different tasks. Experimental Brain Research, 134(2), 163-173.
Smith, C., Umberger, G., Manning, E., Slevin, J., Wekstein, D., Schmitt, F., et al. (1999). Critical decline in fine motor hand movements in human aging. Neurology, 53(7), 1458-1461.
Soukoreff, R., & MacKenzie, I. (2004). Towards a standard for pointing device evaluation, perspectives on 27 years of Fitts' law research in HCI. International Journal of Human-Computer Studies, 61(6), 751-789.
Tresilian, J. (2004). The accuracy of interceptive action in time and space. Exercise and Sport Sciences Reviews, 32(4), 167-173.
Tresilian, J., & Lonergan, A. (2002). Intercepting a moving target: effects of temporal precision constraints and movement amplitude. Experimental Brain Research, 142(2), 193-207.
Voelcker-Rehage, C. (2008). Motor-skill learning in older adults—a review of studies on age-related differences. European Review of Aging and Physical Activity, 5(1), 5-16.
Volkow, N., Gur, R., Wang, G., Fowler, J., Moberg, P., Ding, Y., et al. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155(3), 344-349.
Ward, N., & Frackowiak, R. (2003). Age-related changes in the neural correlates of motor performance. Brain, 126(4), 873-888.
Welford, A., & Shock, N. (1969). Speed and accuracy of movement and their changes with age. Acta Psychologica, 30, 3-15.
  • 同意授權校內瀏覽/列印電子全文服務,於2015-09-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-09-09起公開。

  • 如您有疑問,請聯絡圖書館