系統識別號 U0026-0808201916595000
論文名稱(中文) PS-InSAR技術於台灣山區地形變化偵測誤差因素分析
論文名稱(英文) Error Factors Analysis of Detecting Terrain Deformation with PS-InSAR Technology in Mountain Area of Taiwan
校院名稱 成功大學
系所名稱(中) 資源工程學系
系所名稱(英) Department of Resources Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳郁琪
研究生(英文) Yu-Chi Chen
學號 N46064052
學位類別 碩士
語文別 中文
論文頁數 111頁
口試委員 指導教授-余騰鐸
中文關鍵字 PS-InSAR  StaMPS  Sentinel-1A  GPS  山區 
英文關鍵字 PS-InSAR  StaMPS  Sentinel-1A  GPS  mountain area 
中文摘要 近年來合成孔徑雷達干涉技術應用廣泛,包含最初發展的差分干涉(D-InSAR)及後來延伸出的永久性散射體差分干涉(PS-InSAR)。現今合成孔徑雷達常被應用在山區崩塌之監測、預判、分類山崩型態等工作。首先需使用PS-InSAR技術找出區域內的永久性散射點(PS點),並以坡地上的PS點速度為界定標準,所以位於山地的PS點正確性扮演著極重要的角色。
結果顯示,就整體升、降軌資料來說,經同調性篩選後的PS點,同調性越大,GPS與InSAR差值的RMS越小;在升軌資料中,顯示出從原始的RMS為14.39 mm/yr降至13.62 mm/yr;在降軌資料中,則呈現原始RMS為5.45 mm/yr降至5.02 mm/yr。於因子分析中發現,在平地(測點100公尺以下)的資料中,使用升軌比降軌資料適合;反之在大於100公尺以上,使用降軌資料為較合適的。在平地(坡度小於5度)中,升軌資料較適合,坡度介於5~10度的使用降軌資料較適合。而坡度大於10度的,於升、降軌資料中均為離散程度大。另外,整體來說面向坡的可信度大於背向坡,其中升軌資料中坡向於170~260度間,以及降軌資料中坡向於10~100度的RMS及標準差最小、相關係數大。
英文摘要 Recently, many geodetic surveys have been widely used in Taiwan to monitor land surface deformation, such as Interferometric synthetic aperture radar (InSAR), preliminary survey, and GPS measurement. InSAR technology is widely used, including the original development of D-InSAR, the later extended PS-InSAR, and the proposed TCP-InSAR in 2011. SAR is now widely used in monitoring, interpretation, and classifying landslide types in mountainous areas.
This study used 46 ascending Sentinel-1A images and 29 descending images with SNAP/StaMPS to get LOS velocity and displacement. The GPS data is from opendata of GPS LAB. Taking the southern mountainous area for an example, analysis the differences of site velocities between InSAR and GPS under different terrain factors.
The results show that after higher coherence threshold value filtering, the smaller the RMS of GPS and InSAR difference. In the ascending case, the original data (unfilter) RMS is 14.39 mm/yr down to 13.62 mm/yr (0.9 coherence); in the descending case, the original RMS is 5.45 mm/yr down to 5.02 mm/yr. In the height factor analysis, it is found that in the data of flat terrain, where the elevation is less than 100 meters, the ascending data is more suitable. On the contrary, if elevation is above 100 meters, the descending data is more suitable. In slope factor analysis, the results show that if the angle is less than 5 degrees, the ascending data is more suitable. On the other hand, it is more suitable to use the descending data with slope of 5~10 degrees. Besides, when the slope is greater than 10 degrees, the degree of dispersion is large in both the ascending and descending data. In aspect analysis, overall, the reliability of the slope facing ray direction is greater than that of the back slope. The ascending data between aspect 170 to 260 degrees, and the descending data between 10 to 100 degrees, the RMS and standard deviation are lowest, and the correlation coefficient is highest.
論文目次 摘要 I
Abstract II
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第壹章、 緒論 1
1.1 前言 1
1.2 研究目的與動機 2
第貳章、 文獻回顧 3
2.1 影響SAR之因素 3
1.偏極模式(Polarization) 3
2.入射角( Incidence Angle) 4
3.觀測幾何(Geometry) 5
4.雜訊與斑駁現象(noise and speckle) 8
5.目標物的幾何特徵 8
2.2 PS-InSAR的演變 10
2.3 PS-InSAR應用於大地變形觀測 14
2.4 研究區域 18
第參章、 研究方法 22
3.1 研究工具與資料 22
3.1.1雷達影像-哨兵1號(Sentinel-1A) 23
3.1.2 Sentinel Application Platform (SNAP) 27
3.2 研究流程 28
3.2.1 挑選主影像 31
3.2.2 SNAP前處理 34分割條帶 34載入精密衛星軌道 34影像套合 36 去除影像條帶 36
3.2.3雷達差分干涉技術 (D-InSAR) 37
3.2.4永久散射差分干涉技術(PS-InSAR) 39
3.2.5選擇PS點 41
3.2.6相位解纏 (phase unwrapping) 46
3.3 後續分析 47
3.3.1同調性之再篩選 47
3.3.2使用工具與資料 49
3.4 比對GPS 50
3.4.1 GPS資料來源 51
3.4.2 LOS轉換 53
第肆章、 PS-InSAR研究成果 55
4.1 SNAP軟體處理之干涉影像( interferogram image) 55
4.2 StaMPS處理 57
4.2.1誤差估算 (error estimate) 57 DEM誤差(DEM error) 58 大氣效應與軌道誤差(atmosphere and orbit error, AOE) 59 相位解纏(phase unwrapping) 59
4.2.2平均速度場 62 各區域速度場 62 合併後之速度場 63
第伍章、 成果討論 67
5.1 GPS與InSAR比對結果 67
5.1.1 高程因子 68
5.1.2 坡度因子 70
5.1.3 坡向因子 73
5.2 差異分級比較 76
5.3 地形剖面比較 81
5.3.1 TAYN測站 82
5.3.2 GAIS測站 85
5.3.3 MAJA測站 88
第陸章、 結論與建議 91
6.1 結論 91
6.2 建議 92
參考文獻 93
附錄一:PS-InSAR所使用之Sentinel-1A雷達衛星資料表 100
附錄二:相位解纏前、後並扣除地形、軌道誤差之結果 104
附錄三:各影像於估計軌道誤差之結果 108
參考文獻 Bamler, R. (2000), Principles of Synthetic Aperture Radar. Surveys in Geophysics. 21. 10.1023/A:1006790026612.
Berryman, F., Pynsent, P., Fairbank, J., Disney, S. (2008). A new system for measuring three-dimensional back shape in scoliosis. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 17. 663-72. 10.1007/s00586-007-0581-x.
Bianchini, S., Cigna, F., Righini, G., Proietti, C and Casagli, N. (2012) Landslide hotspot mapping bymeans of persistent scatterer interferometry. Environ Earth Sci. doi:10.1007/s12665-012-1559-5
Casagli, N., Cigna, F., Bianchini, S., Hölbling,D., Füreder,P., Righini, G., Conte, S. Del., Friedl,B., Schneiderbauer,S., Iasio, C.,Vlcko,J., Greif,V., Proske,H., Granica,K., Falco,S., Lozzi,S., Mora,O., Arnaud,A., Novali,F and Bianchi, M.(2016), Landslide mapping and monitoring by using radar and optical remote sensing: Examples from the EC-FP7 project SAFER, Remote Sensing Applications: Society and Environment, Volume 4, Pages 92-108, ISSN 2352-9385
Cascini, L., Fornaro, G and Peduto, D. (2010) , Advanced low‐ and full‐resolution DInSAR map generation for slow‐moving landslide analysis at different scales. Eng Geol 112:29–42
Catalao, J., Nico, G., Hanssen, R and Catita, C.(2011), Merging GPS and Atmospherically Corrected InSAR Data to Map 3-D Terrain Displacement Velocity, IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 6, pp. 2354-2360.
Chaussard, E.,Johnson,C. W., Fattahi, H. and Bürgmann, R.(2016), Potential and limits of InSAR to characterize interseismic deformation independently of GPS data: Application to the southern San Andreas Fault system, Advancing Earth AND Space Science(AGU)
Chen, C. W and Zebker, H. A.(2000), Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms, Journal of the Optical Society of America A, vol. 17, pp. 401-414.
Chen, C. W and Zebker, H. A. (2002), Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Transactions on Geoscience and Remote Sensing, vol. 40, pp. 1709-1719.
Chen, C. W and Zebker, H. A. (2001), Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization, Journal of the Optical Society of America A, vol. 18, pp. 338-351.
Chiba, T., Kaneta, S and Suzuki, Y. (2008). Red relief image map: new visualization method for three dimensional data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing, China.
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F and Rucci, A.(2011), A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE TGRS 49 (9), 3460–3470.
Ferretti, A., Prati, C and Rocca, F.(2000), Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE TGRS 38 (5), 2202–2212.Ferretti, A., Prati, C., Rocca, F., 2001. Permanent scatterers in SAR interferometry.IEEE TGRS 39 (1), 8–20.
Foumelis, M., Delgado B., Jose M., Desnos, Y.L., Engdahl, M., Fernández, D., veci, l., Lu, J. and Wong, C. (2018), ESA SNAP – StaMPS Integrated Processing for Sentinel-1 Persistent Scatterer Interferometry.
Gabriel, A.K., Goldstein, R.M. and Zebker, H.A.( 1989), Mapping small elevation changesover large areas: differential radar interferometry. J. Geophys. Res. 94 (B7),9183–9191.
Hooper, A., Segall, P. and Zebker, H. (2007), Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. J. Geophys. Res., 112,B07407, doi:10.1029/2006JB004763
Hooper, A., Zebker, H., Segall, P. and Kampes, B.(2004), A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Letter, 31, L23611, doi:10.1029/2004GL021737
Hooper,A., Howard, A and Zebker, H. (2007), "Phase unwrapping in three dimensions with application to InSAR time series," J. Opt. Soc. Am. A 24, 2737-2747
International Union of Geological Sciences Working Group on Landslides Bulletin of the International Association of Engineering Geology (1995) 52: 75.
Lee, J. S., (1981), Speckle Analysis and Smoothing of Synthetic Aperture Radar Images, Computer Graphics and Image Processing, 17(1):24-32.
Michele C., Oriol M., María C.G., Núria D. and Bruno C.(2016), Persistent Scatterer Interferometry: A review, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 115, Pages 78-89, ISSN 0924-2716,
Righini, G., Pancioli, V. and Casagli, N.(2012), Updating landslide inventory maps using persistent scatterer interferometry (PSI). Int. J. Remote Sens, 33, 2068–2096.
Rosi, A., Tofani, V., Tanteri, L., Tacconi Stefanelli, C., Agostini, A., Catani, F. and Casagli, N.(2017), The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides, 15, 5–19.
Touzi, R., Lopes, A., Bruniquel, J and Vachon, P.W.(1999), Coherence estimation for SAR imagery, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 135-149, Jan.
Ventisette, C. D., Righini1, G., Moretti, S and Casagli, N. (2014), Multitemporal landslides inventory map updating using spaceborne SAR analysis, International Journal of Applied Earth Observation and Geoinformation 30, p 238–246
Wei, M., Sandwell, D. and Bridget, S. (2010), Optimal combination of InSAR and GPS for measuring interseismic crustal deformation, Advances in Space Research, Volume 46, Issue 2, Pages 236-249, ISSN 0273-1177
Werner, S. H. C. L. and Rosen, P. (1996), Application of the interferometric correlation coefficient for measurement of surface change, American Geophysical Union Fall Meeting.
Yokoyama, R., Shirasawa, M and Pike, R.J. (2002). “Visualizing topography by Openness: A new application of image processing to digital elevation models.” Photogrammetric Engineering and Remote Sensing, 68, 257-265.
Yu, S.B., Chen, H.Y. and Kuo, L.C. (1997),Velocity field of GPS stations in the Taiwan area, Tectonophysics 274, 41 – 59.
Zaksek, K., Oštir, K. and Kokalj, Ž. (2011). Sky-View Factor as a Relief Visualization Technique. Remote Sensing. 3. 10.3390/rs3020398.
Zebker, H.A., Rosen, P.A., Goldstein, R.M., Gabriel, A. and Werner, C., (1994) , Onthe Derivation of Coseismic Displacement Fields Using Differential RadarInterferometry: the Landers Earthquake, JGR-Solid Earth, Vol. 99, No. B10, pp.19617-19634.
Zhang, L., Ding, X. and Lu, Z. (2011). Ground Settlement Monitoring Based on Temporarily Coherent Points between Two SAR Acquisitions ISPRS Journal of Photogrammetry and Remote Sensing, 66, 146-152.
Zhang, L., Lu, Z., Ding, X., Jung, H.S., Feng, G. and Lee, C.W. (2012). Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin Remote Sensing of Environment,117, 429-439
中央地質調查所(2015),「斷層活動性觀測研究第三階段-斷層整合性觀測與潛勢分析(3/4)」(第三年度),共430 頁。
王冠雄,「高雄捷運地質特性與規劃設計案例探討」,捷運施工及托底工程研討會,第119-157頁 (1997)。
王淳璟(2015),結合衛星雷達與GPS 觀測資料分析北台灣地表變形,國立中央大學地球科學系碩士論文,共117頁。
江賢仁(2011),台灣高屏地區場址效應之探討與研究,國立中央大學地球物理研究所博士論文,共188 頁。
郭隆晨(2008),建立 GPS 自動處理分析系統與支援地球科學研究之網路服務,中央研究院地球科學研究所研究技術報告,中央研究院地球科學研究所。
經濟部水利署第七河川局 (2006),高屏溪河系情勢調查計畫(1/2)
趙荃敏(2016),利用大地測量及PSInSAR 技術探討鳳山斷層之運動特性,國立成功大學地球科學系碩士論文,共103頁。
蕭達鴻 (2003),高雄市地質調查與土層特徵,高雄市地質鑽探及液化潛能分析研習會,第3-1至3-34頁。
  • 同意授權校內瀏覽/列印電子全文服務,於起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於起公開。

  • 如您有疑問,請聯絡圖書館