進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0808201916584800
論文名稱(中文) 探討電解液流經石墨烯電極擺放與傾斜角度對誘導電壓的影響
論文名稱(英文) Investigation of the Effect of Electrode Placement and Tilt Angle on Induced Voltage by Electrolyte Flowing over Graphene
校院名稱 成功大學
系所名稱(中) 工程科學系
系所名稱(英) Department of Engineering Science
學年度 107
學期 2
出版年 108
研究生(中文) 孫于淵
研究生(英文) Yu-Yuan Sun
學號 N96064476
學位類別 碩士
語文別 中文
論文頁數 73頁
口試委員 指導教授-楊瑞珍
口試委員-楊煥成
口試委員-張志彰
口試委員-張建成
口試委員-楊鏡堂
中文關鍵字 石墨烯  誘導電壓  充/放電時間  能源擷取 
英文關鍵字 Graphene  Induced Voltage  Charging and Discharging time  Energy Harvesting 
學科別分類
中文摘要 由自然環境中水流運動能源擷取為目前能量收集非常重要的趨勢,不僅能夠提供人類生活對能源的需求,同時也可以對小型電子設備進行自我供電。目前石墨烯為相當新穎之二維材料,因具有優異之物理特性,可提供擷取能源。為了理解水溶液流經石墨烯能夠產生最佳之誘導電壓,電極擺放位置與石墨烯擺之傾斜角度為重要之因素。本論文主要探討氯化鈉電解液流經石墨烯電極擺放與傾斜角度對誘導電壓之影響。首先利用銀膠塗覆電極,探討電極擺放平行水流方向與垂直水流方向,發現平行水流方向可產生較高之誘導電壓,因電解液中的陽離子與電子流動方向相同,可產生最佳之結合。藉由電極擺放平行水流方向,進而設計相同的石墨烯面積,不同的電極塗覆區域,探討水流流經石墨烯長邊與短邊,發現水流流經電極長邊,單位時間內有較高之溶液中陽離子與石墨烯中電子的收集,故產生較佳的電壓響應。最後藉由自行鍍製之氯化銀電極,探討電解液流經不同傾斜角度與不同流速之石墨烯誘導電壓的趨勢,研究發現傾斜角度於20°至45°電壓趨勢上升,歸因於角度提高流速增加,並且充電(charging time)與放電(discharging time)時間逐漸縮短,時間愈短使得單位時間內所收集的電荷量提升,並於傾斜角度45°時有最佳誘導電壓,於45°至60°電壓趨勢下降,歸因於角度上升使得溶液流經石墨烯之面積明顯變形,液滴寬度縮短,造成誘導電壓下降,於連續一分鐘系列實驗過程有很好的重覆性。綜合本論文的實驗結果可以對未來石墨烯能量收集提供有效電極擺放位置與傾斜角度作為應用,也使二維材料石墨烯的應用更多元。
英文摘要 The extraction of energy from water in the natural environment is a very important trend in energy harvesting. It provides energy demand for human needs and for self-powers in small electronic devices. Currently, graphene is a relatively new two-dimensional material that may provide energy extraction because of its excellent physical properties. In order to understand the optimal induced voltage for the liquid flow over the graphene, the placement of the electrode and the tilt angle of the graphene are important factors. This thesis mainly discusses the influence of the electrode placement and tilt angle on the induced voltage from sodium chloride electrolyte flowing over the graphene. First, the electrode was coated with silver gel to investigate its induced current for both parallel flow direction and vertical flow direction to the electrode. This study has shown that the parallel flow arrangement produces higher induced voltages since the cations in the electrolyte are in the same direction as the electron current. Therefore we utilized the parallel flow direction of the electrodes to investigate the liquid flow over the long and short sides of the graphene with the same total areas exposed to the flow. This study has shown that flows through the long side of the electrode, under the higher concentration of electrons in the cation and graphene in the solution per unit time, produce a better voltage response. Finally, through the self-made silver chloride electrode, the trend of the graphene induced voltage of the electrolyte flowing at different tilt angles and different flow rates is investigated. This study found that increasing the tilt angle from 20° to 45° increased the flow rate. In addition, the charging time and the discharging time were gradually shortened. The shorter the charging and discharging times, the higher the amount of charge collected per unit time, and the optimal induced voltage occurred at an angle of 45°. On the other hand, when the tilt angle increased from 45° to 60° the voltage decreased. This is because the angle increase affected the area of the solution flowing over the graphene resulting in the droplet width being shortened and a decrease in the induced voltage. The experimental results of this study provide optimal electrode placement and tilt angle for the best graphene energy harvest from the electrolyte.
論文目次 中文摘要 I
誌謝 XVII
目錄 XVIII
圖目錄 XX
表目錄 XXV
縮寫說明及符號說明 XXVI
第一章 緒論 1
1.1簡介 1
1.2石墨烯 2
1.3研究動機與目的 3
1.4研究架構 5
第二章 文獻回顧與基礎理論 6
2.1石墨烯發展及歷史 6
2.2石墨烯品質檢測原理 7
2.3 文獻介紹 11
2.4 文獻總結 21
第三章 實驗步驟與方法 23
3.1實驗儀器介紹 23
3.2實驗材料與藥品 33
3.2.1石墨烯製造方式及品質 33
3.2.2配置離子水溶液 37
3.3實驗流程 37
3.3.1石墨烯晶片製程 37
3.3.2電極製備 39
3.3.3流道製備 41
3.3.4 實驗架設 42
第四章 結果與討論 44
4.1石墨烯拉曼光譜檢測結果 44
4.2實驗結果與討論 45
4.2.1電極位置對溶液流經石墨烯產生誘導電壓之機制探討 45
4.2.2溶液流經石墨烯長邊與短邊的影響 49
4.2.3探討石墨烯擺放於不同傾斜角度對誘導電壓的影響 51
第五章 結論與未來展望 68
5.1結論 68
5.2未來展望 69
參考文獻 70
參考文獻 [1] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., and Firsov A.A., Electric field effect in atomically thin carbon films. Science. 306(5696): p. 666-669. (2004)
[2] Neto A.C., Guinea F., Peres N.M., Novoselov K.S., and Geim A.K., The electronic properties of graphene. Reviews of Modern Physics. 81(1): p. 109. (2009)
[3] Choi B.G., Park H., Park T.J., Yang M.H., Kim J.S., Jang S.-Y., Heo N.S., Lee S.Y., Kong J., and Hong W.H., Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano. 4(5): p. 2910-2918. (2010)
[4] Hong W., Bai H., Xu Y., Yao Z., Gu Z., and Shi G., Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. The Journal of Physical Chemistry C. 114(4): p. 1822-1826. (2010)
[5] Chen D., Tang L., and Li J., Graphene-based materials in electrochemistry. Chemical Society Reviews. 39(8): p. 3157-3180. (2010)
[6] Chitara B., Panchakarla L., Krupanidhi S., and Rao C., Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Advanced Materials. 23(45): p. 5419-5424. (2011)
[7] Liu Y., Cheng R., Liao L., Zhou H., Bai J., Liu G., Liu L., Huang Y., and Duan X., Plasmon resonance enhanced multicolour photodetection by graphene. Nature Communications. 2: p. 579. (2011)
[8] Goo Kang C., Kyung Lee S., Jin Yoo T., Park W., Jung U., Ahn J., and Hun Lee B., Highly sensitive wide bandwidth photodetectors using chemical vapor deposited graphene. Applied Physics Letters. 104(16): p. 161902. (2014)
[9] Buonomano A., Calise F., d'Accadia M.D., and Vanoli L., A novel solar trigeneration system based on concentrating photovoltaic/thermal collectors. Part 1: Design and simulation model. Energy. 61: p. 59-71. (2013)
[10] Jiao X., Chen R., Zhu X., Liao Q., Ye D., Zhang B., An L., Feng H., and Zhang W., A microfluidic all-vanadium photoelectrochemical cell for solar energy storage. Electrochimica Acta. 258: p. 842-849. (2017)
[11] Subramanian A., Pan Z., Rong G., Li H., Zhou L., Li W., Qiu Y., Xu Y., Hou Y., and Zheng Z., Graphene quantum dot antennas for high efficiency Förster resonance energy transfer based dye-sensitized solar cells. Journal of Power Sources. 343: p. 39-46. (2017)
[12] Geim A.K. and Novoselov K.S., The rise of graphene, in Nanoscience and Technology: A Collection of Reviews from Nature Journals. 2010, World Scientific. p. 11-19.
[13] Viculis L.M., Mack J.J., and Kaner R.B., A chemical route to carbon nanoscrolls. Science. 299(5611): p. 1361-1361. (2003)
[14] Lee C., Wei X., Kysar J.W., and Hone J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 321(5887): p. 385-388. (2008)
[15] Ji X., Xu Y., Zhang W., Cui L., and Liu J., Review of functionalization, structure and properties of graphene/polymer composite fibers. Composites Part A: Applied Science and Manufacturing. 87: p. 29-45. (2016)
[16] Hu C., Song L., Zhang Z., Chen N., Feng Z., and Qu L., Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy & Environmental Science. 8(1): p. 31-54. (2015)
[17] Allen M.J., Tung V.C., and Kaner R.B., Honeycomb carbon: a review of graphene. Chemical Reviews. 110(1): p. 132-145. (2009)
[18] 洪偉修, 世界上最薄的材料-石墨烯. 2009, 康熹化學報報.
[19] Yin J., Li X., Yu J., Zhang Z., Zhou J., and Guo W., Generating electricity by moving a droplet of ionic liquid along graphene. Nature Nanotechnology. 9(5): p. 378. (2014)
[20] Dhiman P., Yavari F., Mi X., Gullapalli H., Shi Y., Ajayan P.M., and Koratkar N., Harvesting energy from water flow over graphene. Nano Letters. 11(8): p. 3123-3127. (2011)
[21] Ho Lee S., Jung Y., Kim S., and Han C.-S., Flow-induced voltage generation in non-ionic liquids over monolayer graphene. Applied Physics Letters. 102(6): p. 063116. (2013)
[22] Ruess G. and Vogt F., Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatshefte für Chemie/Chemical Monthly. 78(3): p. 222-242. (1948)
[23] Dresselhaus M.S. and Dresselhaus G., Intercalation compounds of graphite. Advances in Physics. 51(1): p. 1-186. (2002)
[24] Horiuchi S., Gotou T., Fujiwara M., Asaka T., Yokosawa T., and Matsui Y., Single graphene sheet detected in a carbon nanofilm. Applied Physics Letters. 84(13): p. 2403-2405. (2004)
[25] Novoselov K., Jiang D., Schedin F., Booth T., Khotkevich V., Morozov S., and Geim A., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences. 102(30): p. 10451-10453. (2005)
[26] 胡耀娟, 金娟, 张卉, 吴萍, and 蔡称心, 石墨烯的制备, 功能化及在化学中的应用. 物理化學學報. 26(8): p. 2073-2086. (2010)
[27] Teo G., Wang H., Wu Y., Guo Z., Zhang J., Ni Z., and Shen Z., Visibility study of graphene multilayer structures. Journal of Applied Physics. 103(12): p. 124302. (2008)
[28] Ferrari A.C., Meyer J., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K., and Roth S., Raman spectrum of graphene and graphene layers. Physical Review Letters. 97(18): p. 187401. (2006)
[29] Dresselhaus M.S., Jorio A., Hofmann M., Dresselhaus G., and Saito R., Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters. 10(3): p. 751-758. (2010)
[30] Wu W., Yu Q., Peng P., Liu Z., Bao J., and Pei S.-S., Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology. 23(3): p. 035603. (2011)
[31] Ferrari A.C. and Robertson J., Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 61(20): p. 14095. (2000)
[32] Tuinstra F. and Koenig J.L., Raman spectrum of graphite. The Journal of Chemical Physics. 53(3): p. 1126-1130. (1970)
[33] Malard L., Pimenta M., Dresselhaus G., and Dresselhaus M., Raman spectroscopy in graphene. Physics Reports. 473(5-6): p. 51-87. (2009)
[34] Graf D., Molitor F., Ensslin K., Stampfer C., Jungen A., Hierold C., and Wirtz L., Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Letters. 7(2): p. 238-242. (2007)
[35] Gupta A., Chen G., Joshi P., Tadigadapa S., and Eklund P., Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Letters. 6(12): p. 2667-2673. (2006)
[36] Saito R., Jorio A., Souza Filho A., Dresselhaus G., Dresselhaus M., and Pimenta M., Probing phonon dispersion relations of graphite by double resonance Raman scattering. Physical Review Letters. 88(2): p. 027401. (2001)
[37] Calizo I., Bejenari I., Rahman M., Liu G., and Balandin A.A., Ultraviolet Raman microscopy of single and multilayer graphene. Journal of Applied Physics. 106(4): p. 043509. (2009)
[38] Zhu G., Su Y., Bai P., Chen J., Jing Q., Yang W., and Wang Z.L., Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano. 8(6): p. 6031-6037. (2014)
[39] Vinh N.D. and Kim H.-M., Ocean-based electricity generating system utilizing the electrochemical conversion of wave energy by ionic polymer-metal composites. Electrochemistry Communications. 75: p. 64-68. (2017)
[40] Zhao Y., Song L., Deng K., Liu Z., Zhang Z., Yang Y., Wang C., Yang H., Jin A., and Luo Q., Individual water‐filled single‐walled carbon nanotubes as hydroelectric power converters. Advanced Materials. 20(9): p. 1772-1776. (2008)
[41] Yu F., Hu L., Zhou H., Qiu C., Yang H., Chen M., Lu J., and Sun L., Thermoelectric power of a single-walled carbon nanotubes rope. Journal of Nanoscience and Nanotechnology. 13(2): p. 1335-1338. (2013)
[42] Ghosh S., Sood A., Ramaswamy S., and Kumar N., Flow-induced voltage and current generation in carbon nanotubes. Physical Review B. 70(20): p. 205423. (2004)
[43] Ghosh S., Sood A., and Kumar N., Carbon nanotube flow sensors. Science. 299(5609): p. 1042-1044. (2003)
[44] Liu J., Dai L., and Baur J.W., Multiwalled carbon nanotubes for flow-induced voltage generation. Journal of Applied Physics. 101(6): p. 064312. (2007)
[45] Král P. and Shapiro M., Nanotube electron drag in flowing liquids. Physical Review Letters. 86(1): p. 131. (2001)
[46] Persson B., Tartaglino U., Tosatti E., and Ueba H., Electronic friction and liquid-flow-induced voltage in nanotubes. Physical Review B. 69(23): p. 235410. (2004)
[47] Liu Z., Zheng K., Hu L., Liu J., Qiu C., Zhou H., Huang H., Yang H., Li M., and Gu C., Surface‐Energy Generator of Single‐Walled Carbon Nanotubes and Usage in a Self‐Powered System. Advanced Materials. 22(9): p. 999-1003. (2010)
[48] Yin J., Zhang Z., Li X., Zhou J., and Guo W., Harvesting energy from water flow over graphene? Nano Letters. 12(3): p. 1736-1741. (2012)
[49] Lyklema J., Fundamentals of Interface and Colloid Science: Soft Colloids. Vol. 5. 2005: Elsevier.
[50] He Y., Lao J., Yang T., Li X., Zang X., Li X., Zhu M., Chen Q., Zhong M., and Zhu H., Galvanism of continuous ionic liquid flow over graphene grids. Applied Physics Letters. 107(8): p. 081605. (2015)
[51] Kwak S.S., Lin S., Lee J.H., Ryu H., Kim T.Y., Zhong H., Chen H., and Kim S.-W., Triboelectrification-induced large electric power generation from a single moving droplet on graphene/polytetrafluoroethylene. ACS Nano. 10(8): p. 7297-7302. (2016)
[52] Yin J., Zhang Z., Li X., Yu J., Zhou J., Chen Y., and Guo W., Waving potential in graphene. Nature Communications. 5: p. 3582. (2014)
[53] Wang Y., Duan J., Zhao Y., He B., and Tang Q., Harvest rain energy by polyaniline-graphene composite films. Renewable Energy. 125: p. 995-1002. (2018)
[54] Sood A., Ghosh S., and Das A., Flow-driven voltage generation in carbon nanotubes. Pramana. 65(4): p. 571-579. (2005)
[55] Xu B. and Chen X., Liquid flow-induced energy harvesting in carbon nanotubes: a molecular dynamics study. Physical Chemistry Chemical Physics. 15(4): p. 1164-1168. (2013)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw