進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0808201911062300
論文名稱(中文) 利用螢光光譜方法結合多變量統計分析溫泉廢水及其承受水體之溶解性有機碳特徵
論文名稱(英文) Characterization and identification of dissolved organic carbon in receiving rivers of hot spring wastewater using fluorescence spectroscopy methods and multivariate analysis
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 姚品萱
研究生(英文) Pin-Hsuan Yao
學號 P56061138
學位類別 碩士
語文別 中文
論文頁數 137頁
口試委員 指導教授-張智華
口試委員-陳女菀如
口試委員-賴文亮
口試委員-甘其銓
中文關鍵字 溶解性有機物  螢光激發/發射陣列光譜  平均螢光強度  主成分分析  階層式集群分析  平行因子分析  相關性分析 
英文關鍵字 DOM  FEEM  AFI  PCA  HCA  PARAFAC 
學科別分類
中文摘要 溫泉為國家天然資源,具有休閒觀光遊憩、水土環境保護、農業土地利用、活絡地方經濟等多方面的價值,在人口密度高的溫泉風景區因住宿、餐飲及泡湯活動產生之遊憩及溫泉廢污水,對環境可能會造成直接或間接的影響。本研究針對關子嶺風景區排放之溫泉廢污水至下游承受水體,最終流入白河水庫之有機物污染物進行調查,尤白河水庫為一具有灌溉、給水、防洪及觀光功能之多目標水庫,而上游水質會影響下游集水區及水庫供水品質,而溶解性有機物(DOM)對飲用水水質有負面影響,為一些水質問題如色度、臭度的載體,亦為消毒副產物形成的主要前驅物質,對人體健康產生危害,所以我們需要更加理解DOM的特性,以進行後續的水質管理。
本研究採樣時間為2018年4月至2019年2月共計完成11次採樣,10個採樣點位之水質採樣調查,透過螢光光譜方法以識別溫泉泡湯廢水之有機物特性與來源,並從污染源螢光特性之時空分布,解釋具有相似螢光特性組成的DOM,對溫泉泡湯廢水及其承受水體之溶解性有機碳特徵作進一步討論,藉此找到污染熱點;其與目前常用之基本水質分析方法不同,具有耗時短、高靈敏度、化學藥劑及水樣使用量小等優點,為快速而準確的分析方法。
透過DOM之螢光陣列光譜(FEEM)可以得知溫泉露頭與溫泉業者所排放之溫泉廢水對冬季假日關子嶺溫泉區下游的螢光強度上升及螢光峰值波長位置改變是有貢獻性的。在定性研究方面,主成分分析(PCA)及階層式集群分析(HCA)顯示在夏季時,各採樣點之螢光光譜特徵相似性高,而在冬季時,採樣點之間的螢光特徵相異性則較大。在定量研究方面,平均螢光強度分析(AFI)顯示在夏季時,各採樣點螢光溶解性有機物主要以陸源腐植質占大部分比例,而在冬季時,關子嶺風景區下游處平均螢光強度提高,類蛋白質來源占比上升,尤溫泉坑溪下游W1c的總螢光強度及類蛋白質來源占比上升幅度最大,與冬季人類活動及遊憩溫泉廢污用水量增大有關;平行因子分析(PARAFAC)顯示關子嶺溫泉區之溫泉廢水中的溶解性有機物可分為兩大類,一為與陸源沖刷輸入之類腐植質及類酪氨酸物質有關,其在冬季時之值皆較夏季為低,主要受逕流、降雨沖刷等水文過程影響較大。二為與人類活動較相關之類蛋白質物質及類腐植質物質所組成,其在冬季時之值皆較夏季高,尤在溫泉區下游處更為明顯上升,主導了溫泉露頭及溫泉業者之溶解性有機物成分。無論是夏季或冬季,從集水區上游到下游的螢光特徵變化,都與關子嶺溫泉區因人為活動造成之溫泉廢污水有一定的相關性。
本研究透過螢光光譜方法結合多變量統計分析,定性以確定研究範圍內的主要物種時空分布及螢光有機物主成分,進一步定量分離螢光強度,以更加準確地瞭解污染源,藉泡湯淡季及旺季之比較,討論人為活動及陸源沖刷對陸地及水質的影響,對污染熱區實施水質管理,以降低溫泉風景區之環境污染,達到人、環境與經濟之間的平衡,實現環境永續性發展。
英文摘要 This study aimed at the dissolved organic carbon (DOM) in receiving rivers of the Guanziling hot spring wastewater, eventually flow into the Baihe reservoir. The Baihe reservoir is a multipurpose reservoir with irrigation, water supply, flood control and tourism, and the quality of reservoir water plays an important role in the drinking water quality of downstream catchment. DOM has a negative impact on drinking water quality. It is the carrier of some water quality problems, such as taste, color, and odor. It is also the main precursor of disinfection by-products which is harmful to human health. Therefore, we need to have a better understanding of DOM characteristics for subsequent water quality management. In this study, fluorescence spectroscopy was used in combination with multivariate analysis. By qualitative analysis to determine the fluorescence organic compounds and the major species within the study area. By quantitative analysis to better understand the source of pollution. The effects of human activities and soil flush on land and water quality are discussed by comparing summer and winter, implementing the water quality management for pollution hotspots. In order to reduce the environmental pollution of the hot spring district, to achieve a balance between people, the environment and the economy, to achieve sustainable development of the environment.
Hot spring is one of the national natural resources, which has many values, such as leisure and recreation, water and soil conservation, agricultural land use, activating local economy and so on. The hot spring wastewater generated by accommodation, catering and bathing activities in the hot spring district with intensive population may have direct or indirect impact on the environment. This study aimed at the dissolved organic carbon (DOM) in receiving rivers of the Guanziling hot spring wastewater, eventually flow into the Baihe reservoir. The Baihe reservoir is a multipurpose reservoir with irrigation, water supply, flood control and tourism, and the quality of reservoir water plays an important role in the drinking water quality of downstream catchment. DOM has a negative impact on drinking water quality. It is the carrier of some water quality problems, such as taste, color, and odor. It is also the main precursor of disinfection by-products which is harmful to human health. Therefore, we need to have a better understanding of DOM characteristics for subsequent water quality management.
The sampling time in this study was 11 times from April 2018 to February 2019, water quality survey at 10 sampling sites. To identify and characterize the DOM in the hot spring wastewater by fluorescence spectroscopy, the DOM with similar fluorescence characteristics are explained from the spatial and temporal distribution of pollution sources characteristics. And the characteristics of DOM in receiving rivers of hot spring wastewater are further discussed and pollution hotspots are found. Different from the conventional analysis of water quality parameters, it has the advantages of short time consumption, high sensitivity, small use of chemical agents and water samples. It is a fast and accurate analysis method.
Through the fluorescence excitation/emission matrix (FEEM) analysis methods, the results show that the contribution of hot spring and the discharge of hot spring wastewater have a significant effect on the increase of fluorescence intensity and the change of fluorescence peak wavelength in the downstream of Guanziling hot spring in winter.
In terms of qualitative analysis, principal component analysis (PCA) and hierarchical cluster analysis (HCA) show that the fluorescence characteristics of each sampling point are highly similar in summer, while the fluorescence characteristics of each sampling point are significantly different in winter.
In terms of quantitative analysis, the average fluorescence intensity (AFI) show that terrestrial humic-like is the major substance of fluorescence organic compounds in each sampling site in summer. In winter, the AFI in the downstream of Guanziling hot spring increase, and the proportion of protein-like substance increase. In particular, the total fluorescence intensity and the proportion of protein-like substance in the downstream W1c increases the most, which is related to the increase of water consumption from human activities and hot spring wastewater in winter.
Parallel factor analysis (PARAFAC) shows that DOM in Guanziling hot spring wastewater can be divided into two categories. One is related to terrestrial humic-like and tyrosine-like substances, which are higher in summer than in winter and mainly correlated to terrestrial fluorescent material in forested catchments. Derived from autochthonous processes. Another is related to human activities such as protein-like and humic-like substances, which are higher in winter than in summer, especially in the downstream of the hot spring. It dominate the DOM composition of the Guanziling hot spring.
Whether in summer or winter, the changes of fluorescence characteristics from the upstream to the downstream are correlated with the wastewater caused by human activities in the Guanziling hot spring.
In this study, fluorescence spectroscopy was used in combination with multivariate analysis. By qualitative analysis to determine the fluorescence organic compounds and the major species within the study area. By quantitative analysis to better understand the source of pollution. The effects of human activities and soil flush on land and water quality are discussed by comparing summer and winter, implementing the water quality management for pollution hotspots. In order to reduce the environmental pollution of the hot spring district, to achieve a balance between people, the environment and the economy, to achieve sustainable development of the environment.
論文目次 目錄
摘要 I
致謝 VI
目錄 VIII
表目錄 XI
圖目錄 XII
第 1 章 緒論 1
1.1 研究動機 1
1.1.1 水庫水質的重要性 1
1.1.2 溫泉廢水對飲用水水質的影響 2
1.2 研究目的 3
1.3 論文架構 4
第 2 章 文獻回顧 5
2.1 溶解性有機物 5
2.1.1 溶解性有機物來源 5
2.1.2 溶解性有機物特性 6
2.1.3 溫泉的溶解性有機物特性 7
2.1.4 對人體健康的影響 8
2.2 DOM螢光光譜特徵分析 9
2.2.1 溶解性有機碳 9
2.2.2 紫外–可見光吸光度 9
2.2.3 比紫外吸光度 10
2.2.4 螢光激發∕發射陣列光譜 12
2.3 DOM螢光光譜特徵統計分析 20
2.3.1 主成分分析 20
2.3.2 集群分析 23
2.3.3 平行因子分析 27
第 3 章 研究方法 29
3.1 研究區域 29
3.1.1 白河水庫簡介 29
3.1.2 採樣點 33
3.1.3 採樣現場照片 35
3.2 水質分析方法 40
3.2.1 非揮發溶解性有機碳 40
3.2.2 UV254吸光值及比UV吸光值 41
3.3 DOM螢光光譜特徵分析方法 42
3.3.1 螢光激發∕發射陣列光譜儀 42
3.3.2 主成分分析 44
3.3.3 階層式集群分析 45
3.3.4 平行因子分析 46
第 4 章 結果與討論 48
4.1 溫泉露頭、泡湯廢水及承受水體水質時空分析 50
4.1.1 溫泉露頭基本水質季節性變化 51
4.1.2 溫泉廢水及承受水體水質時空分析 55
4.2 DOM螢光光譜特徵時空分析 69
4.3 DOM螢光光譜特徵統計分析 76
4.3.1 平均螢光強度分析 76
4.3.2 主成分分析 81
4.3.3 階層式集群分析 88
4.3.4 平行因子分析 91
4.4 基本水質與螢光有機物特性之相關性分析 97
4.4.1 關子嶺溫泉區水質於夏季的相關性分析 97
4.4.2 關子嶺溫泉區水質於冬季的相關性分析 100
4.4.3 相關性分析小結 103
第 5 章 結論 104
5.1 結論 104
5.2 建議 108
第 6 章 參考文獻 109
附錄 117
附錄一 基本水質彙整 (107-108) 117
附錄二 關子嶺溫泉泡湯廢水螢光光譜圖 (107-108) 134
參考文獻 Abdi, & Williams. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. Retrieved from https://doi.org/10.1002/wics.101. doi:10.1002/wics.101
Ågren, Buffam, et al. (2008). Dissolved organic carbon characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. Journal of Geophysical Research: Biogeosciences, 113(G3). Retrieved from https://doi.org/10.1029/2007JG000674. doi:10.1029/2007JG000674
Baghoth, Sharma, et al. (2011). Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation–emission matrices and PARAFAC. Water Research, 45(2), 797-809. Retrieved from http://www.sciencedirect.com/science/article/pii/S0043135410006342. doi:https://doi.org/10.1016/j.watres.2010.09.005
Baker, & Spencer. (2004). Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Science of The Total Environment, 333(1), 217-232. Retrieved from http://www.sciencedirect.com/science/article/pii/S0048969704003237. doi:https://doi.org/10.1016/j.scitotenv.2004.04.013
Bartschat, Cabaniss, et al. (1992). Oligoelectrolyte model for cation binding by humic substances. 26(2), 284-294.
Boehme, & Coble. (2000). Characterization of Colored Dissolved Organic Matter Using High-Energy Laser Fragmentation. Environmental Science & Technology, 34(15), 3283-3290. Retrieved from https://doi.org/10.1021/es9911263. doi:10.1021/es9911263
Boehme, Coble, et al. (2004). Examining CDOM fluorescence variability using principal component analysis: seasonal and regional modeling of three-dimensional fluorescence in the Gulf of Mexico. Marine Chemistry, 89(1), 3-14. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304420304000787. doi:https://doi.org/10.1016/j.marchem.2004.03.019
Bogard, Donald, et al. (2012). Distribution and regulation of urea in lakes of central North America. Freshwater Biology, 57(6), 1277-1292. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?id=doi%3A10.1111%2Fj.1365-2427.2012.02775.x&sid=wiley&iuid=7265133&date=2012&jtitle=Freshwater%20Biology&volume=57&atitle=Distribution%20and%20regulation%20of%20urea%20in%20lakes%20of%20central%20North%20America&genre=article&spage=1277&issue=6&title=Freshwater%20Biology&issn=0046-5070&epage=1292.
Bond, Goslan, et al. (2012). A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates. Environmental Technology Reviews, 1(1), 93-113. Retrieved from https://doi.org/10.1080/09593330.2012.705895. doi:10.1080/09593330.2012.705895
Borcard, Gillet, et al. (2018). Numerical ecology with R: Springer.
Bro. (1997). PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2), 149-171. Retrieved from http://www.sciencedirect.com/science/article/pii/S0169743997000324. doi:https://doi.org/10.1016/S0169-7439(97)00032-4
Bro. (1999). Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis. Chemometrics and Intelligent Laboratory Systems, 46(2), 133-147. Retrieved from http://www.sciencedirect.com/science/article/pii/S0169743998001816. doi:https://doi.org/10.1016/S0169-7439(98)00181-6
Cammack, Kalff, et al. (2004). Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnology and Oceanography, 49(6), 2034-2045.
Chen, Peldszus, et al. (2014). Pilot-scale investigation of drinking water ultrafiltration membrane fouling rates using advanced data analysis techniques. Water Research, 48, 508-518. Retrieved from http://www.sciencedirect.com/science/article/pii/S0043135413007720. doi:https://doi.org/10.1016/j.watres.2013.10.007
Chen, Westerhoff, et al. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24), 5701-5710. Retrieved from https://doi.org/10.1021/es034354c. doi:10.1021/es034354c
Chiou, Malcolm, et al. (1986). Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. 20(5), 502-508.
Coble. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry, 51(4), 325-346. Retrieved from http://www.sciencedirect.com/science/article/pii/0304420395000623. doi:https://doi.org/10.1016/0304-4203(95)00062-3
Delpla, Jung, et al. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225-1233. Retrieved from http://www.sciencedirect.com/science/article/pii/S0160412009001494. doi:https://doi.org/10.1016/j.envint.2009.07.001
Determann, Lobbes, et al. (1998). Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Marine Chemistry, 62(1), 137-156. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304420398000267. doi:https://doi.org/10.1016/S0304-4203(98)00026-7
Determann, Reuter, et al. (1994). Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution. Deep Sea Research Part I: Oceanographic Research Papers, 41(4), 659-675. Retrieved from http://www.sciencedirect.com/science/article/pii/0967063794900485. doi:https://doi.org/10.1016/0967-0637(94)90048-5
Duan, & Bianchi. (2007). Particulate and dissolved amino acids in the lower Mississippi and Pearl Rivers (USA). Marine Chemistry, 107(2), 214-229. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304420307001673. doi:https://doi.org/10.1016/j.marchem.2007.07.003
Edzwald, & Tobiason. (1999). Enhanced coagulation: US requirements and a broader view. Water Science and Technology, 40(9), 63-70. Retrieved from http://www.sciencedirect.com/science/article/pii/S0273122399006411. doi:https://doi.org/10.1016/S0273-1223(99)00641-1
Fabris, Chow, et al. (2008). Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Research, 42(15), 4188-4196. Retrieved from http://www.sciencedirect.com/science/article/pii/S0043135408002704. doi:https://doi.org/10.1016/j.watres.2008.06.023
Frimmel, Abbt Braun, et al. (2009). Dissolved Organic Matter (DOM) in Natural Environments
Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems.
Ghernaout. (2014). The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation – A review. Journal of King Saud University - Science, 26(3), 169-180. Retrieved from http://www.sciencedirect.com/science/article/pii/S1018364713000694. doi:https://doi.org/10.1016/j.jksus.2013.09.005
Gonsior, Hertkorn, et al. (2018). Yellowstone Hot Springs are Organic Chemodiversity Hot Spots. Scientific Reports, 8(1), 14155. Retrieved from https://doi.org/10.1038/s41598-018-32593-x. doi:10.1038/s41598-018-32593-x
Gonsior, Schmitt-Kopplin, et al. (2014). Changes in Dissolved Organic Matter during the Treatment Processes of a Drinking Water Plant in Sweden and Formation of Previously Unknown Disinfection Byproducts. Environmental Science & Technology, 48(21), 12714-12722. Retrieved from https://doi.org/10.1021/es504349p. doi:10.1021/es504349p
Goslan, Seigle, et al. (2017). Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter. Chemosphere, 170, 1-9. Retrieved from http://www.sciencedirect.com/science/article/pii/S0045653516316940. doi:https://doi.org/10.1016/j.chemosphere.2016.11.148
Han, Kamber, et al. (2012). 3 - Data Preprocessing. In J. Han, M. Kamber, & J. Pei (Eds.), Data Mining (Third Edition) (pp. 83-124). Boston: Morgan Kaufmann.
Han, Pei, et al. (2011). Data mining: concepts and techniques: Elsevier.
Hazen, Jones, et al. (2018). Carbon in earth (Vol. 75): Walter de Gruyter GmbH & Co KG.
Her, Amy, et al. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38(6), 1427-1438. Retrieved from http://www.sciencedirect.com/science/article/pii/S004313540300678X. doi:https://doi.org/10.1016/j.watres.2003.12.008
Hua, & Reckhow. (2007). Characterization of Disinfection Byproduct Precursors Based on Hydrophobicity and Molecular Size. Environmental Science & Technology, 41(9), 3309-3315. Retrieved from https://doi.org/10.1021/es062178c. doi:10.1021/es062178c
Hua, Reckhow, et al. (2015). Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources. Chemosphere, 130, 82-89. Retrieved from http://www.sciencedirect.com/science/article/pii/S004565351500260X. doi:https://doi.org/10.1016/j.chemosphere.2015.03.039
Hudson, Baker, et al. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review. River Research and Applications, 23(6), 631-649.
Hudson, Baker, et al. (2008). Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England. Science of The Total Environment, 391(1), 149-158.
Kalbitz. (2000). Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science, 165(4), 277. Retrieved from http://sfx.lib.ncku.edu.tw:3410/sfxlcl41?sid=google&auinit=K&aulast=Kalbitz&atitle=Controls%20on%20the%20dynamics%20of%20dissolved%20organic%20matter%20in%20soils%3A%20a%20review&title=Soil%20Science&volume=165&issue=4&date=2000&spage=277&issn=0038-075X.
Kang, Shin, et al. (2002). Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Research, 36(16), 4023-4032. Retrieved from http://www.sciencedirect.com/science/article/pii/S0043135402001148. doi:https://doi.org/10.1016/S0043-1354(02)00114-8
Kowalczuk, Durako, et al. (2009). Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability. Marine Chemistry, 113(3), 182-196. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304420309000139. doi:https://doi.org/10.1016/j.marchem.2009.01.015
Lawaetz, & Stedmon. (2009). Fluorescence intensity calibration using the Raman scatter peak of water. Applied spectroscopy, 63(8), 936-940.
Legendre, & Legendre. (2012). Numerical ecology (Vol. 24): Elsevier.
Li, Gao, et al. (2012). Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. Water Research, 46(4), 1233-1240. Retrieved from http://www.sciencedirect.com/science/article/pii/S0043135411007986. doi:https://doi.org/10.1016/j.watres.2011.12.026
Machado, & Esteves da Silva. (1993). Factor analysis of molecular fluorescence data of marine and soil fulvic acids. Chemometrics and Intelligent Laboratory Systems, 19(2), 155-167. Retrieved from http://www.sciencedirect.com/science/article/pii/0169743993800994. doi:https://doi.org/10.1016/0169-7439(93)80099-4
Mao, Cao, et al. (2017). Advanced solid-state NMR spectroscopy of natural organic matter. Progress in Nuclear Magnetic Resonance Spectroscopy, 100, 17-51. Retrieved from http://www.sciencedirect.com/science/article/pii/S0079656516300115. doi:https://doi.org/10.1016/j.pnmrs.2016.11.003
Miller, & Han. (2009). Geographic data mining and knowledge discovery: CRC Press.
Mohora, Rončević, et al. (2012). Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor. Journal of Hazardous Materials, 235-236, 257-264. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304389412007996. doi:https://doi.org/10.1016/j.jhazmat.2012.07.056
Mopper, Feng, et al. (1996). Effects of cross-flow filtration on the absorption and fluorescence properties of seawater. Marine Chemistry, 55(1), 53-74. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304420396000485. doi:https://doi.org/10.1016/S0304-4203(96)00048-5
Murphy, Butler, et al. (2010). Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environmental Science & Technology, 44(24), 9405-9412.
Murphy, Stedmon, et al. (2013). Fluorescence spectroscopy and multi-way techniques. PARAFAC. 5(23), 6557-6566.
Nisbet, & Sleep. (2001). The habitat and nature of early life. Nature, 409(6823), 1083-1091. Retrieved from https://doi.org/10.1038/35059210. doi:10.1038/35059210
Owen, Amy, et al. (1993). Characterization of natural organic matter and its relationship to treatability: AWWAR.
Papageorgiou, Stylianou, et al. (2017). Effects of ozonation pretreatment on natural organic matter and wastewater derived organic matter – Possible implications on the formation of ozonation by-products. Chemosphere, 170, 33-40. Retrieved from http://www.sciencedirect.com/science/article/pii/S0045653516317167. doi:https://doi.org/10.1016/j.chemosphere.2016.12.005
Peiris, Hallé, et al. (2010). Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Research, 44(1), 185-194. Retrieved from http://www.sciencedirect.com/science/article/pii/S0043135409006198. doi:https://doi.org/10.1016/j.watres.2009.09.036
Persson, & Wedborg. (2001). Multivariate evaluation of the fluorescence of aquatic organic matter. Analytica Chimica Acta, 434(2), 179-192. Retrieved from http://www.sciencedirect.com/science/article/pii/S0003267001008121. doi:https://doi.org/10.1016/S0003-2670(01)00812-1
Richardson, Fasano, et al. (2008). Occurrence and Mammalian Cell Toxicity of Iodinated Disinfection Byproducts in Drinking Water. Environmental Science & Technology, 42(22), 8330-8338. Retrieved from https://doi.org/10.1021/es801169k. doi:10.1021/es801169k
Schouten, van der Meer, et al. (2007). Archaeal and Bacterial Glycerol Dialkyl Glycerol Tetraether Lipids in Hot Springs of Yellowstone National Park. Applied and Environmental Microbiology, 73(19), 6181. Retrieved from http://aem.asm.org/content/73/19/6181.abstract. doi:10.1128/AEM.00630-07
Scott, McKnight, et al. (1998). Quinone Moieties Act as Electron Acceptors in the Reduction of Humic Substances by Humics-Reducing Microorganisms. Environmental Science & Technology, 32(19), 2984-2989. Retrieved from https://doi.org/10.1021/es980272q. doi:10.1021/es980272q
Stedmon, & Markager. (2005). Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Oceanography, 50(2), 686-697. Retrieved from https://doi.org/10.4319/lo.2005.50.2.0686. doi:10.4319/lo.2005.50.2.0686
Stedmon, Markager, et al. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82(3), 239-254. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304420303000720. doi:https://doi.org/10.1016/S0304-4203(03)00072-0
Ward Jr. (1963). Hierarchical grouping to optimize an objective function. 58(301), 236-244.
Warner, Christian, et al. (1977). Analysis of multicomponent fluorescence data. 49(4), 564-573.
Weishaar, Aiken, et al. (2003). Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environmental Science & Technology, 37(20), 4702-4708. Retrieved from https://doi.org/10.1021/es030360x. doi:10.1021/es030360x
Wickland, Neff, et al. (2007). Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability. 10(8), 1323-1340.
Wold, Esbensen, et al. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1), 37-52. Retrieved from http://www.sciencedirect.com/science/article/pii/0169743987800849. doi:https://doi.org/10.1016/0169-7439(87)80084-9
Yamashita, & Tanoue. (2003). Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Marine Chemistry, 82(3), 255-271. Retrieved from http://www.sciencedirect.com/science/article/pii/S0304420303000732. doi:https://doi.org/10.1016/S0304-4203(03)00073-2
台灣行政院環境保護署. (2017). 飲用水水質標準. https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040019
邱啟文. (2005). 溫泉水權總量管制之個案研究﹘以烏來地區為例. 國立臺北科技大學環境規劃與管理研究所碩士論文. Retrieved from https://hdl.handle.net/11296/g66qee.
蔡大偉, & 陳鴻烈. (2009). 以群集分析法探討水庫優養化之動力研究.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw