
系統識別號 
U00260808201723180000 
論文名稱(中文) 
智能控制與系統建模於電磁感應熱療之研究 
論文名稱(英文) 
Research on Intelligent Control and System Modeling to the Electromagnetic Induction Hyperthermia 
校院名稱 
成功大學 
系所名稱(中) 
電機工程學系 
系所名稱(英) 
Department of Electrical Engineering 
學年度 
105 
學期 
2 
出版年 
106 
研究生(中文) 
王瑋成 
研究生(英文) 
WeiCheng Wang 
學號 
n28004101 
學位類別 
博士 
語文別 
英文 
論文頁數 
105頁 
口試委員 
召集委員陳添智 口試委員黃世杰 口試委員白富升 口試委員鄭銘揚 口試委員林志隆 指導教授戴政祺

中文關鍵字 
電磁感應
熱治療
有限元素法
自適應網絡模糊推理系統
遞歸神經網絡
模糊邏輯控制
溫度控制器
模糊模型參考學習控制
自學習模糊控制

英文關鍵字 
electromagnetic induction
hyperthermia
finite element method (FEM)
adaptive network fuzzy inference system (ANFIS)
recurrent neural network (RNN)
fuzzy logic control (FLC)
temperature controller
fuzzy model reference learning control (FMRLC)
selflearning FLC

學科別分類 

中文摘要 
本文的目的主要是開發溫度控制器和系統建模，用於預測與控制電磁感應熱療系統的組織溫度響應。當電磁感應熱療應用於深層組織時，存在著兩個關鍵的挑戰，即溫度難以被精確測量，並且溫度控制易受干擾由於不可預測的受控體參數變化。有限元素法適用於電磁場和熱傳遞的耦合分析，可用於預測磁性材料植入於深層組織中的溫度分佈。為提高有限元素法模型的準確性，自適應網絡模糊推理系統模型被實現用於改善有限元素法模型的準確性。此模型的建立基於有限元元素法模型產生的模擬數據，以及真實實驗的量測數據。這樣的模型可以提供大量的測試數據，去優化有限元素法模型中的參數，並且搭配本文所提出優化程序可以用於加快優化過程。此外，電磁感應熱療的系統辨識採用遞歸神經網絡模型進行分析，以近似在各種實驗條件下的溫度過程。由模擬結果可證明，儘管電流的大小或組織的深淺不同，所提出的優化程序皆能協助有限元元素法模型去準確地估算組織的溫度響應。
閉環控制器被用於追踪參考模型以保證所期望的溫度響應。電磁感應熱療系統產生交變磁場用以加熱高磁導率材料。這種無線感應的加熱方式廣泛地應用於癌症治療中，且幾乎沒有副作用。熱療的功效強烈依賴於溫度的精確控制。然而，在處理過程中，控制性能由於嚴重的擾動和參數變化而惡化。在本研究中，實現了一種具有改良的增益調整機制的自學習模糊邏輯控制器，以獲得高控制性能在更廣泛的熱治療情況下。此方法的實現藉由適當地改變模糊逆模型的輸出縮放因子去調整控制規則。所提出的自學習模糊邏輯控制器與經典自調整模糊邏輯控制器，以及模糊模型參考學習控制進行控制性能的比較。另外，通過體外豬肝的實驗，去測試所提出的自學習模糊邏輯控制器的控制性能與負載自適應能力。實驗結果表明，該控制器在電磁感應熱療系統的溫度控制方面表現出較好的強健性和優秀的適應性。

英文摘要 
The aim of this dissertation involved developing a temperature controller and system modeling for predicting the temperature response of tissues in electromagnetic induction hyperthermia (EIH). There are two critical challenges when applied to deepseated tissue using EIH, i.e., the temperature may not be measured accurately and the temperature control is susceptible to disturbance due to unpredictable plant parameter variations. The finite element method (FEM) was suitable for coupled analysis with electromagnetic fields and heat transfer, which could be used to predict temperature profiles in deep tissue implanted with magnetic materials. To improve the accuracy of the FEM model, an adaptive network fuzzy inference system (ANFIS) model was implemented on the basis of measured data and simulated data, which were generated by the FEM model. The ANFIS model can provide a large number of testing data to optimize the parameters in the FEM model, and it can be used to expedite the optimization process. Moreover, system identification for EIH was analysed and selected with recurrent neural networks models to approximate various conditions of the temperature process. The recurrent neural network was useful for establishing the temperature prediction model with the advantages of simple design and stable efficacy.
A closedloop controller was applied to track a reference model to guarantee a desired temperature response. The EIH system generates an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating has few side effects when it is extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified selflearning fuzzy logic controller (SLFLC) with gain tuning mechanism was implemented to obtain high control performance in a wider range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. The proposed SLFLC was compared to the classical selftuning fuzzy logic controller (STFLC) and fuzzy model reference learning control (FMRLC). Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicate that the proposed controller shows greater robustness and excellent adaptability with respect to temperature control of the EIH system.

論文目次 
摘要 i
Abstract iii
Acknowledgement v
Table of Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
1.1. Background 1
1.2. Motivation 3
1.3. Dissertation Organization 6
Chapter 2 Modeling of Electromagnetic Induction Hyperthermia for temperature Prediction and Optimization 8
2.1. Introduction 8
2.2. Analytical and Numerical Methods 8
2.3. Modeling Based on Finite Element Methods 15
2.4. Adaptive Network Fuzzy Inference System 21
2.5. Optimization Methods Using Genetic Algorithms 24
2.6. Experimental Results and Discussion 26
2.7. Summary 31
Chapter 3 System Identification using Neural Network for Electromagnetic Thermotherapy Systems 32
3.1. Introduction 32
3.2. Modeling Based on Neural Networks 33
3.3. Elman Neural Network 34
3.4. Experimental Results and Discussion 36
3.5. Summary 41
Chapter 4 Temperature Controller for Magnetic Induction Hyperthermia Using PID and Fuzzy Logic Control 42
4.1. Introduction 42
4.2. Inverter with Transformer 42
4.3. Control of COMSOL using MATLAB 47
4.4. PID Control 48
4.5. Fuzzy Logic Control 51
4.6. Simulation and Experimental Results 52
4.7. Summary 60
Chapter 5 Temperature Controller for Electromagnetic Induction Hyperthermia Using Self Tuning and Learning Fuzzy Logic Control 62
5.1. Introduction 62
5.2. Equivalent Treatment Time Calculation 62
5.3. SelfTuning Fuzzy Logic Control 64
5.4. Proposed SelfLearning Fuzzy Logic Control 69
5.5. Experiment System 77
5.6. Experimental Results and Discussion 80
5.7. Summary 92
Chapter 6 Conclusions and Future Works 93
6.1. Conclusions 93
6.2. Future Works 94
Reference 95
Publication List 103
Vita 105

參考文獻 
[1] Y. Ishihara, Y. Gotanda, N. Wadamori, and J. Matsuda, “Hyperthermia applicator based on a reentrant cavity for localized head and neck tumors,” Rev. Sci. Instrum., vol. 78, no. 2, 024301, Feb. 2007.
[2] P. R. Stauffer, “Evolving technology for thermal therapy of cancer,” Int. J. Hyperthermia., vol. 21, no. 8, pp. 731–744, May. 2011.
[3] A. J. Fenn, Adaptive Phased Array Thermotherapy for Cancer. London, U.K.: Artech House, 2008.
[4] H. Wang, X. Li, X. Xi, B. Hu, L. Zhao, and Y. Liao, “Effects of magnetic induction hyperthermia and radiotherapy alone or combined on a murine 4T1 metastatic breast cancer model,” Int. J. Hyperthermia, vol. 27, no. 6, pp. 563–572, Aug. 2011.
[5] P. Moroz, S. K. Jones, and B. N. Gray, “Magnetically mediated hyperthermia: Current status and future directions,” Int. J. Hyperthermia, vol. 18, no. 4, pp. 267–284, Jul. 2002.
[6] P. R. Stauffer, T. C. Cetas, and R. C. Jones, “Magnetic induction heating of ferromagnetic implants for inducing localized hyperthermia in deepseated tumors,” IEEE Trans. Biomed. Eng., vol. 31, no. 2, pp. 235–251, Feb. 1984.
[7] S. C. Huang, J. W. Kang, H. W. Tsai, Y. S. Shan, X. Z. Lin, and G. B. Lee, “Electromagnetic thermotherapy for deep organ ablation by using a needle array under a synchronizedcoil system,” IEEE Trans. Biomed. Eng. vol. 61, no. 11, pp. 2733–2739, Nov. 2014.
[8] Y. Lv, Z. Deng and J. Liu, “3D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field,” IEEE Trans. Nanobiosci., vol. 4, no. 4, pp. 284–294, Dec. 2005.
[9] A. L. Glover, J. B. Bennett, J. S. Pritchett, S. M. Nikles, D. E. Nikles, J. A. Nikles, and C. S. Brazel, “Magnetic heating of iron oxide nanoparticles and magnetic micelles for cancer therapy,” IEEE Trans. Magn., vol. 43, no. 1, pp. 231–235, Jan. 2013.
[10] V. Mateev, I. Marinova, and Y. Saito, “Coupled field modeling of ferrofluid heating in tumor tissue,” IEEE Trans. Magn., vol. 49, no. 5, pp. 1793–1796, May 2013.
[11] H. Rahn, S. Schenk, H. Engler, and S. Odenbach, “Tissue model for the study of heat transition during magnetic heating treatment,” IEEE Trans. Magn., vol. 49, no. 1, pp. 224–249, Jan. 2013.
[12] L. Y. Zhao, J. Y. Liu, W. W. Ouyang, D. Y. Li, L. Li, L. Y. Li, and J. T. Tang, “Magneticmediated hyperthermia for cancer treatment: Research progress and clinical trials,” Chinese Phys., vol. 22, no. 10, 108104, Oct. 2013.
[13] C. C. Tai, C. C. Chen, C. C. Kuo, F. W. Lin, C. J. Chang, Y. H. Chen, and W. C. Wang, “Deepmagneticfield generator using flexible laminated Copper for thermotherapy applications,” IEEE Trans. Magn., vol. 50, no. 11, Nov. 2014.
[14] R. Zuchini, H. W. Tsai, C. Y. Chen, C. H. Huang, S. C. Huang, G. B. Lee, C. F. Huang, and X. Z. Lin, “Electromagnetic thermotherapy using fine needles for hepatoma treatment,” Eur. J. Surg. Oncol., vol. 37, no. 7, pp. 604–610, July 2011.
[15] C. GómezPolo, S. Larumbe, J. I. PérezLandazábal, J. M. Pastor, J. Olivera, and J. SotoArmañanzas, “Magnetic induction heating of FeCr nanocrystalline alloys,” J. Magn. Magn. Mater., vol. 324, no. 11, pp. 1897–1901, June 2012.
[16] P. Kitak, A. Glotic, and I. Ticar, “Heat transfer coefficients determination of numerical model by using particle swarm optimization,” IEEE Trans. Magn., vol. 50, no. 2, Feb. 2014.
[17] P. di Barba, F. Dughiero, M. Forzan, and E. Sieni, “A Paretian approach to optimal design with uncertainties. Application in induction heating”, IEEE Trans. Magn., vol. 50, no. 2, Feb. 2014.
[18] M. Hettegger, B. Streibl, O. Biro, and H. Neudorfer, “Measurements and simulations of the convective heat transfer coefficients on the end windings of an electrical machine,” IEEE Trans. Ind. Electron., vol. 59, no. 5, pp. 2299–2308, May 2012
[19] J. A. Paulus, J. S. Richardson, R. D. Tucker, and J. B. Park, “Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia,” IEEE Trans. Biomed. Eng., vol. 43, no. 4, pp. 406–413, Apr. 1996.
[20] F. Dughiero and S. Corazza, “Numerical simulation of thermal disposition with induction heating used for oncological hyperthermic treatment,” Med. Biol. Eng. Comput., vol.43, no. 1, pp. 40–46, Jan. 2005.
[21] M. R. Barati, C. Selomulya, K. G. Sandeman, and K. Suzuki, “Extraordinary induction heating effect near the first order Curie transition,” Appl. Phys. Lett., vol. 105, 162412, Oct. 2014.
[22] K. Ogata, Modern Control Engineering. Englewood Cliffs, NJ: PrenticeHall., 2010.
[23] W. L. Lin, R. B. Roemer, and K. Hynynen, “Theoretical and experimental evaluation of a temperature controller for scanned focused ultrasound hyperthermia,” Med. Phys., vol. 17, no. 4, pp. 615–625, July 1990.
[24] J. K. Potocki and H. S. Tharp, “Reducedorder modeling for hyperthermia control,” IEEE Trans. Biomed. Eng., vol. 39, no. 12, pp. 1265–1273, Dec. 1992.
[25] M. Mattingly, R. B. Roemer, and S. Devasia, “Exact temperature tracking for hyperthermia: A modelbased approach,” IEEE Trans. Control Syst. Technol., vol. 8, no. 6, pp. 979–992, Nov. 2000.
[26] O. Lucía, P. Maussion, E. J. Dede, and J. M. Burdío, “Induction heating technology and its applications: Past developments, current technology, and future challenges,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2509–2520, May 2014.
[27] W. C. Wang, G. E. Lin, C. C. Tai, Y. J. Lan, and T. C. Yu, “Realtime prediction of temperature for electromagnetic heating therapy in deepseated tissue,” IEEE Trans. Magn., vol. 52, no. 3, Mar. 2016.
[28] J. P. McGahan and G. D. Dodd, “Radiofrequency ablation of the liver: current status,” Am J Roentgenol., vol. 176, no. 1, pp. 3–16, Jan. 2001.
[29] E. J. Davies, Conduction and Induction Heating. London, U.K.: Peregrinus, 1990.
[30] S. Lupi, M. Forzan, and A. Alifierov, Induction and Direct Resistance Heating‒Theory and Numerical Modeling. Switzerland: Springer, 2015.
[31] C. V. Dodd and W. E. Deeds, “Analytical solutions to eddy current probe coil problems,” J. Appl. Phys., vol. 39, no. 6, pp. 2829–2938, May 1968.
[32] J. Donea, S. Giuliani, and A. Philippe, “Finite elements in the solution of electromagnetic induction problems,” Int. J. Num. Meth. Eng., vol. 8, no. 2, pp. 359–367, 1974.
[33] H. H. Pennes, “Analysis of tissue and arterial blood temperature in the resting human forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, Aug. 1948.
[34] J. Werner and M. Buse, “Temperature profiles with respect to inhomogeneity and geometry of the human body,” J. Appl. Physiol., vol. 65, no. 3, pp. 1110–1118, Sep. 1988.
[35] D. Arora, M. Skliar, and R. B. Roemer, “Modelpredictive control of hyperthermia treatments,” IEEE Trans. Biomed. Eng., vol. 49, no. 7, pp. 629–639, July 2002.
[36] R. B. Roemer, A. M. Fletcher, and T. C. Cetas, “Obtaining local SAR and blood perfusion data from temperature measurements: steady state and transient techniques compared,” Int. J. Radiat. Oncol. Biol. Phys., vol. 11, no. 8, pp.1539–1550, Aug. 1985.
[37] A. Y. Goharrizi, W. A. N’djin, R. Kwong, and R. Chopra “Development of a new control strategy for 3D MRIcontrolled interstitial ultrasound cancer therapy,” Med. Phys., vol. 40, no. 3, 033301, Mar. 2013.
[38] V. S. Nemkov and R. Goldstein, “Computer simulation for fundamental study and practical solutions to induction heating problems,” The international journal for computation and mathematics in electrical and electronic engineering, vol. 22, no. 1, pp. 181–191, Mar. 2003.
[39] J. S. R. Jang, “ANFIS: Adaptivenetworkbased fuzzy inference system,” IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685, May/June 1993.
[40] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI: The Univ. Michigan Press, 1975.
[41] R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics. Hoboken, NJ: Wiley–IEEE Press, 2007.
[42] S. Yildirim, “New neural networks for adaptive control of robot manipulators,” in Proc. IEEE Int. Conf. Neural Netw., Houston, TX, 1997, pp. 1727–1731.
[43] J. Wang, J. Wang, M. Zeng, and J. Wang, “Prediction of internet traffic based on Elman neural network,” in Proc. IEEE Int. Conf. Contorl and Deci., Guilin, 2009, pp. 1248–1252.
[44] Y. C. Cheng, W. M. Qi, and W. Y. Cai, “Dynamic properties of Elman and modified Elman neural network,”, in Proc. IEEE Int. Conf. Machine Learning and Cybe., Beijing, 2002, pp. 637–640.
[45] R. Köker, “Design and performance of an intelligent predictive controller for a sixdegreeoffreedom robot using the Elman network,” Information Sci., vol. 176, no. 12, pp. 1781–1799, June 2005.
[46] J. B. Mbede, X. Huang, and M. Wang, “Robust neurofuzzy sensorbased motion control among dynamic obstacles for robot manipulators,” IEEE Trans. Fuzzy Syst., vol. 11, no.2, pp. 249–261, Apr. 2003.
[47] H. Liu, S. Wang, and P. Ouyang, “Fault diagnosis based on improved Elman neural network for a hydraulic servo system,” in Proc. Int. Conf. Robot. Autom. Mechatron., Bangkok, 2006, pp. 1–6.
[48] F. J. Lin, S. Y. Chen, and K. K. Shyu, “Robust dynamic slidingmode control using adaptive RENN for magnetic levitation system,” IEEE Trans. Neural Networks, vol. 20, no. 6, pp. 938–951, June 2009.
[49] C. F. Juang and J. S. Chen, “A recurrent fuzzynetworkbased inverse modeling method for a temperature system control,” IEEE Trans. Syst., Man, Cyberen. C, Appl. Rev., vol. 37, no. 3, pp. 410–417, May 2007.
[50] C. F. Juang and J. S. Chen, “Water bath temperature control by a recurrent fuzzy controller and its FPGA implementation,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 941–949, June 2006.
[51] J. L. Elman, “Finding structure in time,” Cognitive Sci., vol. 14, no. 2, pp. 179–211, Mar. 1990.
[52] S. Haykin, Neural Networks and learning machines. Upper Saddle River, NJ: Pearson Prentice Hall, 2009.
[53] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neural networks for identification and control of dynamic systems,” IEEE Trans. Neural Networks, vol. 5, no. 2, pp. 306–319, Mar. 1994.
[54] P. Li, F. Yan, C. Ge, and M. Zhang, “Ultraprecise tracking control of piezoelectric actuators via a fuzzy hysteresis model,” Rev. Sci. Instrum., vol. 83, no. 8, 085114, Aug. 2012.
[55] S. Sanaye, M. Dehghandokht, and A. Fartaj, “Temperature control of a cabin in an automobile using thermal modeling and fuzzy controller,” Appl. Energy, vol. 97, pp. 860–868, Sep. 2012.
[56] P. Arpaia, L. Bottura, G. Montenero, and C. Svelto, “Smart monitoring system based on adaptive current control for superconducting cable test,” Rev. Sci. Instrum., vol. 85, no. 12, 125111, 2014.
[57] D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction to Fuzzy Control. Germany, Berlin: SpringerVerlag, 1993.
[58] R. K. Mudi and N. R. Pal, “A robust selftuning scheme for PI and PDtype fuzzy controllers,” IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 2–16, Feb. 1999.
[59] S. C. Wang and Y. H. Liu, “A modified PIlike fuzzy logic controller for switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1812–1825, May 2011.
[60] J. R. Layne and K. M. Passino, “Fuzzy model reference learning control,” J. Intell. Fuzz. Syst., vol. 4, no. 1, pp. 33–47, Jan. 1996.
[61] S.A. Sapareto and W.C. Dewey, “Thermal dose determination in cancer therapy,” Int. J. Radiation Oncol. Biol. Phys., vol. 10, no. 6, pp. 787–800, June 1984.
[62] H. Rhim, S. N. Goldberg, G. D. Dodd, L. Solbiati, H. K. Lim, M. Tonolini, and O. K. Cho, “Essential techniques for successful radiofrequency thermal ablation of malignant hepatic tumors,” Radiographics. vol. 21, pp. S17–S35, Oct. 2001.
[63] H. Zhang and D. Liu, Fuzzy Modeling and Fuzzy Control. Boston, MA: Birkhäuser, 2006.
[64] K. M. Passino and S. Yurkovich, Fuzzy Control, AddisonWesley, Menlo Park, CA, 1998.
[65] Z. Kovacic and S. Bogdan, Fuzzy Controller Design: Theory and Applications. Boca Raton, FL: CRC/Taylor & Francis, 2006.
[66] G. Lindfield and J. Penny, Numerical Methods: Using MATLAB. Ellis Horwood, NY: Academic Press, 2012.
[67] N. Park, D. Lee, and D. Hyun, “A powercontrol scheme with constant switching frequency in classD inverter for inductionheating jar application,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1252–1260, June 2007.
[68] B. Samo, B. Jovan, D. Janko, and G. Gregor, “Magnetic effects on thermocouple,” Meas Sci Technol., vol. 25, no. 3, pp. 1–11, Feb. 2014.
[69] L. Zhen and L. Xu, “Fuzzy learning enhanced speed control of an indirect fieldoriented induction machine drive,” IEEE Trans. Control Syst. Technol., vol. 8, no. 2, pp. 270–278, Mar. 2000.
[70] R. C. Dorf and R. H. Bishop, Modern Control Systems. Upper Saddle River, NJ: PrenticeHall, 2008.

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20220808起公開。同意授權校外瀏覽/列印電子全文服務，於20220808起公開。 


