進階搜尋


下載電子全文  
系統識別號 U0026-0808201610521900
論文名稱(中文) 羥丙基甲基纖維素複合薄膜添加二硫化鉬之微結構與磨潤特性研究
論文名稱(英文) Microstructure and Tribology Performance of HPMC Composite Film with MoS2 additive
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 吳振宇
研究生(英文) Jhen-yu Wu
學號 N16031794
學位類別 碩士
語文別 中文
論文頁數 77頁
口試委員 指導教授-施士塵
口試委員-蘇演良
口試委員-林震銘
口試委員-高文顯
中文關鍵字 二硫化鉬  羥丙基甲基纖維素  綠色磨潤  複合材料  添加劑 
英文關鍵字 green tribology  MoS2  HPMC  composite  additive 
學科別分類
中文摘要 對環境友善的綠色磨潤材料是近年來發展的趨勢之一,二硫化鉬在摩擦學領域中引起很大的關注,微米結構的粉末具有優異的潤滑特性,但是卻有實際應用上的困難,因為其有著容易聚集以及對溼度高度敏感的問題。讓二硫化鉬良好的磨潤特性也因此被侷限住。這些微米顆粒實際使用上只能當作潤滑液中之添加劑,切削潤滑液中的材料像是PAO油、石蠟等是對環境有害的。本研究使用對生物友好及環境無害的材料羥丙基甲基纖維素,作為綠色磨潤的減摩材料,並在其中添加微米等級之二硫化鉬,進一步提升其潤滑特性。本研究實驗中,對環境友善的材料羥丙基甲基纖維素作為成膜劑以及分散劑,其可迅速的凝固形成薄膜,且均勻分散二硫化鉬微米顆粒。
實驗中,添加不同含量微米等級之二硫化鉬於羥丙基甲基纖維素溶液中,使微米結構的二硫化鉬均勻分佈、成膜並附著於基板上形成薄膜。由Raman分析的方法結果顯示此法能夠擁有良好之均勻度,並且有效的分散二硫化鉬顆粒,而XRD方法結果則指出其優異之結晶性。透過SEM觀察薄膜表面型態及橫截面的元素也顯示出其優異的元素分布及分散性。實驗結果表明,添加5-10 wt. %二硫化鉬粉末的複合薄膜,能夠有效降低40%摩擦係數,也因磨耗深度的降低,減少80%磨耗體積,增強了抗磨耗特性,觀察添加量與表面粗糙度的關係,發現5-10 wt. %含量的二硫化鉬,擁有平均摩擦係數最低的表面粗糙度。總體而言,本研究成功添加二硫化鉬至羥丙基甲基纖維素中均勻分散製造出薄膜,成為對環境友善的磨潤材料。
英文摘要 Most of the conventional cutting fluids or lubricants, such as PAO oil and paraffin are petroleum products and harmful to the environment. Recently, due to the environment issues, research of green tribology has become more and more popular. Molybdenum disulfide(MoS2) particles are able to provide great lubricity due to their graphite-like structure which have been well studied and reported. However, there are still several difficulties in applying MoS2 micro-particles as solid lubricant or lubricant additives, since their nature of easy-gathering and high sensitivity to moisture. To solve the environment issues and the MoS2 micro-particles’ application problems at the same time, in this study, we use the biofriendly and eco-friendly material hydroxypropyl methylcellulose with MoS2 micro-particles as additives to reduce friction and wear. Experiment results show that hydroxypropyl methylcellulose as film forming agent and dispersant can rapidly form films, and well disperse the MoS2 micro-particles.
In the experiment, different percentage of micro-MoS2 particles were added into HPMC solution, MoS2 micro-particles were well distribution in HPMC matrix. Raman analysis results show the excellent dispersivity and XRD analysis indicate excellent crystallization of the HPMC/MoS2 composite films. SEM observation and the surface element analysis by EDX appear the elements are well distribution. The tribotest results showed that with 5-10 wt.% MoS2 additives can reduce 40 percent of friction coefficient and 80 percent of wear volume. 5-10 wt.% MoS2 are discovered to have average lower friction relate to surface roughness. Overall, this study successfully adding MoS2 micro-particles into HPMC to form well distribution film as eco-friendly tribology composites.
論文目次 口試合格證明 I
摘要 II
SUMMARY III
誌 謝 XI
總目錄 XII
表目錄 XVI
圖目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2研究動機 2
1-3 研究目的 3
第二章 文獻回顧 4
2-1潤滑劑 4
2-2 羥丙基甲基纖維素 4
2-3 二硫化鉬 5
2-4 複合材料 18
第三章 實驗內容 22
3-1實驗目的 22
3-3實驗流程 23
3-4實驗方法與規劃 24
3-4-1試片製作與前處理 24
3-4-2實驗參數規畫 24
3-4-3顯微結構組織觀察 25
3-4-4磨潤實驗觀察與分析 27
3-4-5實驗設備 30
第四章 實驗結果與討論 33
4-1製作薄膜之粉末分析 33
4-1-1羥丙基甲基纖維素(hydroxypropyl methylcellulose, HPMC)粉末顯微組織與成分分析以及尺寸大小 33
4-1-2二硫化鉬(Molybdenum Sulfide,MoS2)粉末顯微組織與成分分析以及尺寸大小 34
4-2羥丙基甲基纖維素成膜特性與解聚能力 37
4-3薄膜分析 40
4-3-1薄膜Raman分析 40
4-3-2膜厚與摩擦係數之關係(以5 wt. %二硫化鉬添加量薄膜為例) 41
4-3-3不同二硫化鉬添加量薄膜膜厚控制 44
4-3-4 羥丙基甲基纖維素薄膜膜厚元素均勻度分布控制 46
4-3-5膜厚元素均勻度分布控制(以添加3 wt. % 二硫化鉬薄膜為例) 47
4-3-6薄膜分散性(以添加3 wt. % 二硫化鉬為例) 48
4-3-7薄膜表面型態 50
4-3-8薄膜XRD分析 52
4-3-9不同二硫化鉬添加量與表面粗糙度關係 54
4-4磨耗行為探討 55
4-4-1薄膜使用之矽基板分析 55
4-4-3不同二硫化鉬添加量其摩擦機制的改變 56
4-5鍍層之摩擦機制 61
4-5-1對磨鉻鋼球利用Raman觀察轉移層 61
4-5-2利用EDS觀察轉移層(以1.5 wt. %二硫化鉬為例) 62
4-6負載和速度與摩擦係數的關係 65
4-6-1負載與摩擦係數的關係 65
4-6-2速度與摩擦係數的關係 67
4-7不同二硫化鉬添加量與表面粗糙度和摩擦係數關係 70
4-7-1不同二硫化鉬添加量與表面粗糙度的關係 70
4-7-2不同二硫化鉬添加量與平均摩擦係數的關係 70
4-7-3表面粗糙度與摩擦係數的關係 71
4-8薄膜表面磨耗體積以及鉻鋼球Wear Scar Diameter(WSD) 73
4-8-1不同二硫化鉬添加量與薄膜表面之磨耗體積 73
4-8-2不同二硫化鉬添加量與對磨鉻鋼球Wear Scar Diameter (WSD) 74
第五章 總結 75
5-1結論 75
5-2展望 76
參考文獻 77
參考文獻 [1] A. Fahs, M. Brogly, S. Bistac, M. Schmitt, Hydroxypropyl methylcellulose (HPMC) formulated films: Relevance to adhesion and friction surface properties, Carbohydrate Polymers, 80 105-114.2010
[2] S.-C. Shi, T.-F. Huang, J.-Y. Wu, Preparation and Tribological Study of Biodegradable Lubrication Films on Si Substrate, Materials, 8 1738-1751.2015
[3] L. Rapoport, Y. Bilik, Y. feldman, M. Homyonfer, S.R. Cohen, R. Tenne, Hollow nanoparticles of WS2 as potential solid-state lubricants, nature.1997
[4] L. Yadgarov, R. Rosentsveig, G. Leitus, A. Albu-Yaron, A. Moshkovich, V. Perfilyev, R. Vasic, A.I. Frenkel, A.N. Enyashin, G. Seifert, L. Rapoport, R. Tenne, Controlled doping of MS2 (M=W, Mo) nanotubes and fullerene-like nanoparticles, Angewandte Chemie, 51 1148-1151.2012
[5] M.A. Hamilton, L.A. Alvarez, N.A. Mauntler, N. Argibay, R. Colbert, D.L. Burris, C. Muratore, A.A. Voevodin, S.S. Perry, W.G. Sawyer, A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings, Tribology Letters, 32 91-98.2008
[6] V.N. Bakunin, A.Y. Suslov, G.N. Kuzmina, O.P. Parenago, Synthesis and application of inorganic nanoparticles as lubricant components- a review, journal of nanoparticle research, 273-284.2004
[7] R. Rosentsveig, A. Gorodnev, N. Feuerstein, H. Friedman, A. Zak, N. Fleischer, J. Tannous, F. Dassenoy, R. Tenne, Fullerene-like MoS2 Nanoparticles and Their Tribological Behavior, Tribology Letters, 36 175-182.2009
[8] L. Rapoport, O. Nepomnyashchy, I. Lapsker, A. Verdyan, Y. Soifer, R. Popovitz-Biro, R. Tenne, Friction and wear of fullerene-like WS2 under severe contact conditions: friction of ceramic materials, Tribology Letters, 19 143-149.2005
[9] G. Liu, X. Li, B. Qin, D. Xing, Y. Guo, R. Fan, Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface, Tribology Letters, 17.2004
[10] R. Tenne, L. Margulis, M. Genut, G. Hodes, Polyhedral and cylindrical structure of structures of tungsten disulphide, Nature, 360.1992
[11] Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes, science.1995
[12] L.Rapoport, Y.Feldman, M.Homyonfer, H.Cohen, J.Sloan, J.L. Hutchison, R.Tenne, Inorganic fullerene-like material as additives to lubricants: structure-function relationship, Wear.1999
[13] L.Cizaire, B.Vacher, T.L. Mogne, J.M. Martin, L.Rapoport, A. Margolin, R.Tenne, Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles, surface and Coatings Technology.2002
[14] L. Rapoport, V. Leshchinsky, M. Lvovsky, I. Lapsker, Y. Volovik, Y. Feldman, R. Popovitz-Biro, R. Tenne, Superior tribological properties of powder materials with solid lubricant nanoparticles, Wear, 255 794-800.2003
[15] L. Rapoport, O. Nepomnyashchy, A. Verdyan, RonitPopovitz-Biro, Y. Volovik, B. Lttah, R. Tenne, polymer nanocomposites with fullerene-like solid lubricant, Advanced engineering materials.2004
[16] L. Joly-Pottuz, F. Dassenoy, M. Belin, B. Vacher, J.M. Martin, N. Fleischer, Ultralow-friction and wear properties of IF-WS2 under boundary lubrication, Tribology Letters, 18 477-485.2005
[17] L. Rapoport, N. Fleischer, R. Tenne, Applications of WS2(MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites, Journal of Materials Chemistry, 15 1782.2005
[18] A. Moshkovith, V. Perfiliev, I. Lapsker, N. Fleischer, R. Tenne, L. Rapoport, Friction of fullerene-like WS2 nanoparticles: effect of agglomeration, Tribology Letters, 24 225-228.2006
[19] A. Katz, M. Redlich, L. Rapoport, H.D. Wagner, R. Tenne, Self-lubricating coatings containing fullerene-like WS2 nanoparticles for orthodontic wires and other possible medical applications, Tribology Letters, 21 135-139.2006
[20] A.N. Enyashin, S. Gemming, M. Bar-Sadan, R. Popovitz-Biro, S.Y. Hong, Y. Prior, R. Tenne, G. Seifert, Structure and stability of molybdenum sulfide fullerenes, Angewandte Chemie, 46 623-627.2007
[21] R.Tenne, M.Remskar, A.Enyashin, G.Seifert, Inorganic Nanotubes and fullerene-like structures, Apply Physics.2008
[22] R. Rosentsveig, A. Margolin, A. Gorodnev, R. Popovitz-Biro, Y. Feldman, L. Rapoport, Y. Novema, G. Naveh, R. Tenne, Synthesis of fullerene-like MoS2 nanoparticles and their tribological behavior, Journal of Materials Chemistry, 19 4368.2009
[23] R. Tenne, M. Redlich, Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes, Chem Soc Rev, 39 1423-1434.2010
[24] O. Tevet, O. Goldbart, S.R. Cohen, R. Rosentsveig, R. Popovitz-Biro, H.D. Wagner, R. Tenne, Nanocompression of individual multilayered polyhedral nanoparticles, Nanotechnology, 21 365705.2010
[25] O. Tevet, P. Von-Huth, R. Popovitz-Biro, R. Rosentsveig, H.D. Wagner, R. Tenne, Friction mechanism of individual multilayered nanoparticles, Proc Natl Acad Sci U S A, 108 19901-19906.2011
[26] L. Rapoport, A. Moshkovich, V. Perfilyev, A. Laikhtman, I. Lapsker, L. Yadgarov, R. Rosentsveig, R. Tenne, High Lubricity of Re-Doped Fullerene-Like MoS2 Nanoparticles, Tribology Letters, 45 257-264.2011
[27] R. Tenne, R. Rosentsveig, A. Zak, Inorganic nanotubes and fullerene-like nanoparticles: Synthesis, mechanical properties, and applications, physica status solidi (a), 210 2253-2258.2013
[28] W.X. Chen, J.P. Tu, Z.D. Xu, R. Tenne, R. Rosentveig, W.L. Chen, H.Y. Gan, Wear and Friction of Ni-P Electroless Composite Coating Including Inorganic Fullerene-WS2 Nanoparticles, Advanced engineering materials.2002
[29] HaihuaWu, R. Yang, B. Song, Q. Han, J. Li, Y. Zhang, Y. Fang, R. Tenne, C. Wang, Biocompatible Inorganic Fullerene-Like Molybdenum Disulfide Nanoparticles Produced by Pulsed Laser Ablation in Water, ACS nano.2011
[30] T.W. Scharf, S.V. Prasad, Solid lubricants: a review, Journal of Materials Science, 48 511-531.2012
[31] M. Chhowalla, G.A.J. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear, Nature.2000
[32] C. Muratore, J.E. Bultman, S.M. Aouadi, A.A. Voevodin, In situ Raman spectroscopy for examination of high temperature tribological processes, Wear, 270 140-145.2011
[33] H. Yang, S. Liu, J. Li, M. Li, G. Peng, G. Zou, Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance, Nanotechnology, 17 1512-1519.2006
[34] J. Tannous, F. Dassenoy, I. Lahouij, T. Le Mogne, B. Vacher, A. Bruhács, W. Tremel, Understanding the Tribochemical Mechanisms of IF-MoS2 Nanoparticles Under Boundary Lubrication, Tribology Letters, 41 55-64.2010
[35] J.J. Hu, J.S. Zabinski, Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS2 nanoparticles investigated using lateral force microscopy (LFM), Tribology Letters, 18 173-180.2005
[36] I. Lahouij, F. Dassenoy, B. Vacher, J.-M. Martin, Real Time TEM Imaging of Compression and Shear of Single Fullerene-Like MoS2 Nanoparticle, Tribology Letters, 45 131-141.2011
[37] I. Lahouij, F. Dassenoy, L. de Knoop, J.-M. Martin, B. Vacher, In Situ TEM Observation of the Behavior of an Individual Fullerene-Like MoS2 Nanoparticle in a Dynamic Contact, Tribology Letters, 42 133-140.2011
[38] J. Jelenc, M. Remskar, Friction on a single MoS2 nanotube, Nanoscale Res Lett, 7 208.2012
[39] T.Z. Zou, J.P. Tu, H.D. Huang, D.M. Lai, L.L. Zhang, D.N. He, Preparation and Tribological Properties of Inorganic Fullerene-like MoS2, Advanced Engineering Materials, 8 289-293.2006
[40] X.-B. Liu, C. Zheng, Y.-F. Liu, J.-W. Fan, M.-S. Yang, X.-M. He, M.-D. Wang, H.-B. Yang, L.-H. Qi, A comparative study of laser cladding high temperature wear-resistant composite coating with the addition of self-lubricating WS2 and WS2/(Ni–P) encapsulation, Journal of Materials Processing Technology, 213 51-58.2013
[41] J.R. Lince, Tribology of co-sputtered nanocomposite Au/MoS2 solid lubricant films over a wide contact stress range, Tribology Letters.2004
[42] T.W. Scharf, P.G. Kotula, S.V. Prasad, Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings, Acta Materialia, 58 4100-4109.2010
[43] M.-S. Yang, X.-B. Liu, J.-W. Fan, X.-M. He, S.-H. Shi, G.-Y. Fu, M.-D. Wang, S.-F. Chen, Microstructure and wear behaviors of laser clad NiCr/Cr3C2–WS2 high temperature self-lubricating wear-resistant composite coating, Applied Surface Science, 258 3757-3762.2012
[44] M. Mohammadi, M. Ghorbani, A. Azizi, Effect of specimen orientation and heat treatment on electroless Ni-PTFE-MoS2 composite coatings, Journal of Coatings Technology and Research, 7 697-702.2010
[45] X. Hou, C.X. Shan, K.-L. Choy, Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles, Surface and Coatings Technology, 202 2287-2291.2008
[46] E.W. ROBERTS, Ultralow friction films of MoS2 for space application, Thin Solid Films.1989
[47] K. Holmberg, A concept for friction mechanisms of coated surfaces, Surface and Coatings Technology.1992
[48] B. Bhushan, Principles and applications of tribology.2013
[49] P. Harlin, P. Carlsson, U. Bexell, M. Olsson, Influence of surface roughness of PVD coatings on tribological performance in sliding contacts, Surface and Coatings Technology, 201 4253-4259.2006
[50] S.-C. Shi, J.-Y. Wu, T.-F. Huang, Y.-Q. Peng, Improving the tribological performance of biopolymer coating with MoS2 additive, Surface and Coatings Technology.2016
[51] N. Myshkin, A. Kovalev, Adhesion and friction of polymers, Polymer tribology.2009
[52] R.C. Bowers, W.C.Clinton, W.A.Zisman, Friction and Lubrication of Nylon, industrial and engineering chemistry, 46.1954

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw