系統識別號 U0026-0807202015093600
論文名稱(中文) 駁船式浮動風機平台水動力及穩定性之實驗與數值分析
論文名稱(英文) Experimental and Numerical Study of Hydrodynamic and Stability Analysis of Barge-Type FOWT Platform
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 楊雯媗
研究生(英文) Wen-Hsuan Yang
學號 N86074152
學位類別 碩士
語文別 英文
論文頁數 123頁
口試委員 指導教授-楊瑞源
中文關鍵字 駁船式浮動風機平台  阻尼池  反應振幅運算子  垂蕩板 
英文關鍵字 barge-type FOWT  moon pool  response amplitude operators(RAO)  heave plate 
中文摘要 在浮動式風機市場中,每一個商轉中的浮動式風力發電計畫根據不同的水深、海床 條件、當地基礎設施和當地供應鏈的能力,選擇適合的浮動平台,本研究在規則波以 及不規則波浪條件設定下,將具有阻尼池的駁船式浮式風力發電機平台裝載 NREL 5MW 風力發電機,使用國立成功大學水工所進行的風波實驗以及 ANSYS AQWA 軟 體分析浮式平台的自然週期及反應振幅運算子 (RAO)。這項研究比較了具有阻尼池 的駁船式浮動式風機平台在不同海況下,主要在 Surge、Heave 以及 Pitch 三個自由度 方向的運動響應。確保具有阻尼池的駁船式平台能夠承受波浪的荷載以及是否適合設 置在臺灣新竹外海。
浮式風機(FOWT)平台可根據達到穩定性的方式分為三種類型。除了這三種類型, 駁船式浮動式風機平台是一個新的概念,它使用阻尼池減少平台運動響應。在本研究 中,具有阻尼池的駁船式浮動平台為原始平台,在水深 50 公尺下支撐 NREL 5MW 風 機。本研究目的為進行 1/64 縮尺比例之浮動式離岸風機水槽實驗。利用微型風扇(Fan) 取代風機的簡易模型;ANSYS AQWA 用於分析平台的水動力性能和穩定性。以上主 要分為三項測試:包括自由衰減測試、有無風機運轉下的規則波以及不規則波測試。 進行實驗以透過自由衰減測試獲得自然週期;將數值模擬與 1:64 縮尺實驗進行了比 較,以觀察具有阻尼池的駁船式平台上的 Surge、Heave 以及 Pitch 方向的運動響應以 及張力變化值。
首先,將不帶垂蕩板的原始平台的實驗結果與數值結果進行比較。通過數值模擬和 實驗結果的驗證,數值模型對浮式平台的響應和繫纜系統的張力響應具有良好的可預 測性。而原始設計的穩定性不利於 Heave 及 Pitch 方向上的運動,因此設計了帶有垂 蕩板的優化平台,以驗證垂蕩板的配置可以減少平台在 Heave 以及 Pitch 方向上的運 動響應。最後,將帶有垂蕩板的優化平台與沒有垂蕩板的原始平台進行數值比較,以 提高穩定性。根據獲得的結果,提出了一種優化的駁船式 FOWT 平台。
英文摘要 The global wind energy industry has developed for over 30 years. However, offshore wind power within 50 to 60 meters of water depth is gradually saturated. Wind power installations are from nearshore to offshore by degrees. With an increase in water depth and cost, the fixed-bottom structure is not a good choice for offshore wind. So the floating offshore wind industry has become the center stage of renewable energy. The floating offshore wind turbines (FOWT) platform can be classified as three main types according to reaching stability. In addition to three types, a barge-type floating offshore wind turbine platform which is a new concept which moon pool is used to reduce the motion of platform.

In this study, a floating barge platform with a moon pool supports NREL 5MW wind turbine with mooring systems at a water depth of 50 meters. ANSYS AQWA is used to analyze the hydrodynamic performance and stability of platform. Experiments in a wave basin (60m*7m*1m) were conducted at Tainan Hydraulics Laboratory (THL), National Cheng Kung University (NCKU). The model is a 1:64 scaled barge platform and the turbine is scaled down from NREL 5MW wind turbine. The three test conditions of platform were simulated, including the free decay test, regular wave test, irregular wave test with wind operation and parking. The experiment is conducted to get the natural period through free decay test; The numerical simulation compares with the 1:64 scaled experiment to observe the motions and Response Amplitude Operator (RAO) of surge, heave, and pitch motions on the barge platform with moon pool; Then, the optimized platform with an additional heave plate is designed to compare to original platform without a heave plate to improve the stability. From the obtained result, an optimized barge-type FOWT platform is proposed in this study.
摘要 II
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.2.1 Background of Floating Offshore Wind Market 2
1.2.2 Floating Offshore Wind Turbine Typologies 5
1.2.3 Current Status and Development of Offshore Wind Farms in Taiwan 12
1.3 Objectives and Scope 15
Chapter 2 Methodology 16
2.1 Introduction 16
2.2 Theory of ANSYS AQWA 16
2.2.1 Linear Wave Theory 18
2.2.2 Ocean Environmental Load 19
2.2.3 Morison Equation and Equation of Motion 22
2.3 Numerical Model of Floating Barge Wind Turbine Platform 26
2.3.1 Numerical Setup 26
2.3.2 Design of Barge Platform Model 29
2.3.3 Design of Mooring Systems 34
2.4 Experimental Design of Floating Barge Wind Turbine Platform 37
2.4.1 Experimental Equipment 37
2.4.2 Model of Barge Platform Design in the Wave Basin 41
2.4.3 Model of Mooring Systems Design in the Wave Basin 46
2.4.4 Configuration and Procedure of Experiment 50
Chapter 3 Experimental Model Results 58
3.1 Free Decay Test 58
3.1.1 Free Decay Test Result 63
3.2 Motion Response of Platform Under the Action of Regular Waves 66
3.2.1 Motion Response of Platform Under Regular Waves 66
3.2.2 Motion Response of Platform Under the Action of Wind and Wave 69
3.3 Motion Response of Platform Under Irregular Waves 71
3.4 Tension Analysis of Mooring Systems 78
Chapter 4 Numerical Simulation Results 82
4.1 Hydrodynamic Diffraction result 82
4.1.1 Hydrostatic Result 82
4.1.2 Free Decay Test Result 84
4.2 Hydrodynamic Time Response Result 87
4.2.1 Platform’s Response in Regular Wave 87
4.2.2 Platform’s Response in Regular Wave with Wind 89
4.2.3 Experiment and Numerical Simulation Validation 91
4.2.4 Platform’s Response in Irregular Wave 93
4.2.5 Tension of Mooring System in the Time Domain 100
Chapter 5 Optimization of Barge Platform with NREL 5MW Wind Turbine 103
5.1 Numerical Modeling 104
5.2 Simulation Result Analysis 106
5.2.1 Free Decay Test 106
5.2.2 Response Amplitude Operator (RAO) 109
5.2.3 Frequency and Time Domain Result Analysis 112
Chapter 6 Conclusions and Future Works 119
6.1 Conclusions of Barge Floating Offshore Wind Turbine Platform Design 119
6.2 Future Works 120
參考文獻 [1] 2017 ANSYS, I. (2017). Lecture 1: Introduction.
[2] ANSYS. (2015). Aqwa Theory Manual. Ansys, 15317(November), 174.
[3] Archer, C. L., &Jacobson, M. Z. (2005). Evaluation of global wind power. Journal of Geophysical Research D: Atmospheres, 110(12), 1–20. https://doi.org/10.1029/2004JD005462
[4] Carbon Trust. (2018). Floating Wind Joint Industry Project Phase I Summary Report. 1–72. https://www.carbontrust.com/media/675868/flw-jip-summaryreport-phase1.pdf
[5] Choung, J., Jeon, G.-Y., &Kim, Y. (2013). Study on Effective Arrangement of Mooring Lines of Floating-Type Combined Renewable Energy Platform. Journal of Ocean Engineering and Technology, 27(4), 22–32. https://doi.org/10.5574/ksoe.2013.27.4.022
[6] DNV GL. (2015). OFFSHORE STANDARD DNV GL AS Position mooring. July, 114.
[7] DNV GL. (2016). Standard DNVGL-ST-N001: marine operations and marine warranty (edition: 2016-06). 1–543.
[8] Frandsen, J. B. (2004). Sloshing motions in excited tanks. In Journal of Computational Physics (Vol. 196, Issue 1). https://doi.org/10.1016/j.jcp.2003.10.031
[9] Gaillarde, G. (2005). Water Motion in Moonpools Empirical and Theoretical Approach. Maritime Research Institute, Wageningen, The Netherlands.
[10] Garrido-Mendoza, C. A. (2015). Hydrodynamic forces on heave plates for offshore systems oscillating close to the seabed or the free surface. Doctor Thesis, April.
[11] Golbert, D. R., Blanco, P. J., Clausse, A., &Feijóo, R. A. (2016). Floating Offshore Wind: Market and Technology Review. Journal of Computational Physics, 311(June), 374. https://doi.org/10.1016/j.jcp.2016.01.012
[12] Holthuijsen, L. H. (2007). Waves in oceanic and coastal waters. Waves in Oceanic and Coastal Waters, 9780521860(September), 1–387. https://doi.org/10.1017/CBO9780511618536
[13] Hwung, et al. (2003). Steady-state wind wave spectrum off Yun-Lin, Taiwan. Journal of Coastal and Ocean Engineering, 1-13
[14] IDEOL. (2019). https://www.ideol-offshore.com/enTitle.
[15] J. Jonkman. (2009). Multidisciplinary optimization design for the section layout of umbilicals based on intelligent algorithm. Journal of Offshore Mechanics and Arctic Engineering, 140(3). https://doi.org/10.1115/1.4038580
[16] J.M.J. Journée and W.W. Massie. (2001). A reversible micro mechanical-latch shock switch by external magnetic field. Proceedings of IEEE Sensors, January. https://doi.org/10.1109/ICSENS.2012.6411159
[17] JA Pinkster. (1980). Low frequency second order wave exciting forces on floating structures. Statistical Field Theory, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004
[18] John Wiley & Sons. (2018). Offshore Mechanics: Structural and Fluid Dynamics for Recent Applications.
[19] Jonkman, J. M., &Buhl, M. L. (2007). Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation Preprint. WindPower 2007 Conference & Exhibition, June, 35. https://doi.org/10.1021/jo035528b
[20] Kleppa, E. (2017). Numerical analysis of wave-induced responses of fl oating bridge pontoons with bilge boxes Master Thesis. June.
[21] Kovacs, G. (1993). Environmental conditions and environmental testing. INTELEC, International Telecommunications Energy Conference (Proceedings), 2(October), 92–99. https://doi.org/10.1109/INTLEC.1993.388591
[22] Kuo, et al. (1994). A Study on the Spectral Form and the Nonlinearity of Nearshore ter Waves. Proc. 16th Conf. on Ocean Engineering
[23] Leal dos Santos, C., Diogenes, S., Maurício Araújo, A., Corte Real Fernandes, E., Cordeiro de Araujo Bezerra, C., Alencar Borges, W. F., Coutinho Calheiros, E., Andrade, L. I.de, Requião Ferreira, C., &Antônio Coutinho Silva, A. (2018). 5 MW and 2 MW NREL wind turbines simulation comparison for steady loading calculations. January. https://doi.org/10.26678/abcm.cobem2017.cob17-0834
[24] Moorings, A. (2019). http://abc-moorings.weebly.com/.
[25] NEDO. (2019). https://www.nedo.go.jp/english/index.html. https://www.nedo.go.jp/english/index.html
[26] PUTSILLO, M.V. (1953). O sviaziakh lobnoi oblasti s zritel’nym bugrom u cheloveka. Voprosy Neǐrokhirurgii, 17(3), 37–43.
[27] Robertson, A., Jonkman, J., Wendt, F., Goupee, A., &Dagher, H. (2016). Definition of the OC5 DeepCwind Semisubmersible Floating System. 44. https://doi.org/10.1007/s10436-006-0062-y
[28] Vijay, K. G., Karmakar, D., Uzunoglu, E., &Guedes Soares, C. (2016). Performance of barge-type floaters for floating wind turbine. Progress in Renewable Energies Offshore - Proceedings of 2nd International Conference on Renewable Energies Offshore, RENEW 2016, October, 637–646. https://doi.org/10.1201/9781315229256-76
[29] Vijayakumar, G., &Selvam, P. (2012). Hydrodynamic Analysis of Barge Floater With Moonpool for 5 Mw Wind Turbine Using Wamit. November 2015, 20–22. https://www.researchgate.net/profile/Vijaya_Kumar43/publication/271217998_HYDRODYNAMIC_ANALYSIS_OF_BARGE_FLOATER_WITH_MOONPOOL_FOR_5_MW_WIND_TURBINE_USING_WAMIT/links/563c47a608ae405111a7925e.pdf
[30] Wei, Y., Yang, J., Chen, G., &Hu, Z. (2011). The research of moonpool size effect on the hydrodynamic performance of FDPSO. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1, 459–467. https://doi.org/10.1115/OMAE2011-49586
[31] Vasty Engineering Consultants Co., Ltd. (2005). The Planning of Environment protection and promotion on Kang-Nan coast along Hsinchu city, 2-13

  • 同意授權校內瀏覽/列印電子全文服務,於2023-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-01-01起公開。

  • 如您有疑問,請聯絡圖書館