進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0807202008134300
論文名稱(中文) 可動態調整訓練範圍與速度之智慧滾輪訓練系統應用於腦中風老鼠之精準復健
論文名稱(英文) A smart running wheel system with adjustable exercise range and speed for precision rehabilitation of rats following ischemic stroke
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 王鈺霖
研究生(英文) Yu-Lin Wang
學號 P88981102
學位類別 博士
語文別 英文
論文頁數 39頁
口試委員 指導教授-蘇芳慶
口試委員-張志涵
口試委員-郭立杰
口試委員-官大紳
口試委員-黃茂雄
口試委員-林聰益
中文關鍵字 個別化設計  缺氧性腦中風老鼠  復健  動態訓練範圍滾輪 
英文關鍵字 Individualized design  Ischemic stroke rat  Rehabilitation  Dynamic exercise range running wheel 
學科別分類
中文摘要 背景
一個創新設計的運動滾輪被實現且應用於經中大腦動脈暫時阻塞(MACO)手術致缺血性腦中風老鼠的復健。此滾輪主要是基於個體化的設計,可以根據個別的體能狀況做動態調整運動範圍與運動速度。

材料及方法
此滾輪平台的設計包含機構、硬體電路與軟體程式三個部分。機構設計包含滾輪主體與可調式運動區間側板,此側板下半部會切割一條寬為2公分的0~180度U形曲線,五組紅外線感測器可以依據老鼠個別的體能在U形曲線動態調整。硬體電路包含為微處理器、紅外線感測器與馬達的連接。軟體程式則利用紅外線感測訊號來偵測老鼠位置與控制滾輪速度。因此我們將此創新滾輪取名為動態訓練範圍滾輪(DEARW)。在此滾輪的各別化訓練過程分成三個階段:自由訓練(free training)、漸進式訓練(progressive training)與常規訓練(normal training),首先為兩天的自由訓練讓老鼠自主的在滾輪上運動,並記錄平均速度與最大速度。接著三天的漸進式訓練從靜止逐漸上升到自由訓練的最大速度訓練,過程中會記錄老鼠運動範圍。接著利用自由訓練的平均速度與最大速度搭配漸進式訓練的運動範圍來進行兩週的常規訓練。跑步機組及傳統馬達式滾輪組在第一週以每分鐘10公尺、每次30分鐘、連續五天進行訓練,然後在第二及三週以每分鐘20公尺、每次30分鐘、連續五天進行訓練。在老鼠中大腦動脈暫時阻塞手術開刀前、開刀後第十四、第二十一及第二十八天,經尾部靜脈對老鼠抽血以測量皮質醇濃度(cortisol level)。在開刀後第七及第二十八天,對老鼠進行動作功能測試包括用來評估運動功能恢復的修改的神經學損傷嚴重程度評分表(Modified Neurological Severity Scores, mNSS),前足位置錯誤測試(forelimb foot fault placing test)及滾筒運動測試(rotarod test)。在開刀後第二十八天,老鼠將於麻醉下將腦部取出進行用來評估損傷體積的尼氏染色(Nissl staining)及評估神經細胞損傷程度的蘇木精-伊紅染色(H&E-staining)。實驗老鼠隨機分配到偽對照組、控制組、動態訓練範圍滾輪組,跑步機組及傳統馬達式滾輪(MRW)等五組。中大腦動脈暫時阻塞手術開刀一週後在動態訓練範圍滾輪組,跑步機組及傳統馬達式滾輪(MRW),進行連續三週的復健訓練後就皮質醇濃度、動作功能測試及尼氏染色和蘇木精-伊紅染色進行比較。

結果
在手術後第二十八天,用來評估運動功能恢復的修改的神經學損傷嚴重程度評分表,前足位置錯誤測試及滾筒運動測試和用來評估損傷體積的尼氏染色及評估神經細胞損傷程度的蘇木精-伊紅染色均呈現動態訓練範圍滾輪組與控制組有明顯差異,顯示本裝置可有效用於缺血性腦中風老鼠的復健。但在控制組、跑步機組及傳統馬達式滾輪組差異並不顯著,顯示跑步機組及傳統馬達式滾輪組訓練成效不佳。在復健過程中跑步機組的皮質醇濃度是所有組別最高的,顯示此訓練方式因電擊會產生極大的壓力。

結論
動態訓練範圍滾輪組的實驗成效優於其他對應組別,顯示此系統設計的優點並實現利用動態訓練範圍滾輪技術對中風老鼠能進行個別化復健訓練之精準復健概念。未來有機會對臨床中風復健領域未滿足的需求有創新的運用。
英文摘要 Background: An innovative animal running wheel of adopting an individualized design was implemented for the rehabilitation of rats following ischemic stroke by middle cerebral artery occlusion (MCAO) surgery.
Material and Methods: The design of the running wheel platform comprised three parts: the mechanism, the hardware circuit, and the software. The mechanism included the running wheel, and a side plate for exercise area adjustments. A U-curve with a width of 2 cm was drawn on the lower half of the side plate for the dynamic adjustments of five infrared (IR) sensors based on the physical fitness of the rats. The hardware circuit connected a microprocessor, the IR sensors, and a motor. The software was designed to detect the rat’s position and to control the speed of the running wheel based on the signals obtained from the IR sensors. This innovative running wheel was named the dynamic exercise range running wheel (DEARW). The individualized training process for this running wheel was divided into free training, progressive training and normal training, which consisted of 2 days of free training to record their average and maximum speeds, 3 days of progressive training for recording their exercise ranges, and 2 weeks of normal training based on their average speeds, maximum speeds, and exercise ranges. The treadmill and MRW groups trained at 10 m/min for 30 min daily for five consecutive days during the first week and 20 m/min for 30 min daily for five consecutive days during the second and third weeks. Blood samples were obtained from the tail veins of all rats before the operations and on Days 14, 21, and 28 post-surgery to measure cortisol levels. The motor function tests including Modified Neurological Severity Scores (mNSS), forelimb foot fault placing and rotarod tests were performed on Days 7 and 28 post-surgery. On Day 28 post-surgery, the rats were sacrificed under anesthesia, and their brains were removed for lesion volume determined using Nissl staining and levels of cell damage by using H&E staining. The rats were randomly assigned into five groups (i.e., sham, control, treadmill, motor running wheel (MRW), and DEARW) and subjected to MCAO surgery accordingly. After 1 week, the rats in the rehabilitation groups (i.e., the treadmill, MRW, and DEARW groups) began a 3-week rehabilitation training program for comparison of cortisol level, motor function tests, lesion volume determined using Nissl staining and levels of cell damage by using H&E staining.
Results: On Day 28 after surgery, the motor function evaluation (including Modified Neurological Severity Scores (mNSS), forelimb foot fault placing and rotarod tests), lesion volume determined using Nissl staining and levels of cell damage by using H&E staining of the DEARW and control groups differed significantly, indicating that this device is effective for ischemic stroke rats motor training. However, differences between the results of the control, treadmill and MRW groups were not significant, indicating the poor efficacy of treadmill and MRW rehabilitation. The level of cortisol in the treadmill group remained consistently high throughout the rehabilitation program, indicating that the electrically stimulated rats were under immense stress.
Conclusion: The outcomes of the rats in the proposed group, which were rehabilitated using the designed training system, were better than those of their control-group counterparts, indicating the advantages of the designed system and achieved concept of precision rehabilitation of rats following ischemic stroke with the use of DEARW technology for treating each rat’s rehabilitation process in an individualized manner. That may have new applications for clinical translation for unmet need of stroke rehabilitation in the future.
論文目次 考試合格證明 I
Abstract II
中文摘要 IV
誌謝 VI
Contents VII
List of Tables IX
List of Figures X
Abbreviations XII

Chapter 1. Background and Significance 1
1.1 Ischemic stroke and cardiovascular deconditioning 1
1.2 Exercise rehabilitation mechanisms 1
1.3 Animal stroke model 2
1.4 Animal training platforms 2
1.5 Running-wheel-based training mechanism 3
1.6 Dynamic Exercise Range Running Wheel(DEARW) 3
1.7 Motivation 3
1.8 Specific Aims 4
Chapter 2. Material and Methods 6
2.1 Mechanism design of the running wheel platform 7
2.2 Hardware circuit 9
2.3 Control software 9
2.4 Verification of system functions 12
2.5 Experimental model of stroke in rats 13
2.5.1 Middle Cerebral Artery Occlusion(MCAO) 13
2.5.2 Animals and grouping 13
2.5.3 Rehabilitation training 14
2.5.4 Assessment of ischemic stroke rehabilitation 15
2.5.4.1 Modified Neurological Severity Scores(mNSS) 15
2.5.4.2 Forelimb foot fault placing test 16
2.5.4.3 Rotarod test 16
2.5.4.4 Serum cortisol levels 17
2.5.4.5 Nissl staining 17
2.5.4.6 H&E staining 18
2.6 Statistical analysis 18
Chapter 3. Results 19
3.1 Motor performance of ischemic stroke rats in DEARW 19
3.2 Motor function test 20
3.3 Cortisol level 21
3.4 Tissue photographs and lesion volume 22
3.5 Tissue photos and brain damage score 23
Chapter 4. Discussion 26
4.1 Achievement in present study 26
4.2 Method of forced training 26
4.3 Level of stress 27
4.4 Comparison with Commercial Products 29
4.5 Limitation 30
4.6 Clinical translation 31
Chapter 5. Conclusion and Future Work 33
5.1 Conclusion 33
5.2 Future Work 34
References 35
參考文獻 1.Duncan PW, Goldstein LB, Horner RD, Landsman PB, Samsa GP, Matchar DB: Similar motor recovery of upper and lower-extremities after stroke. Stroke 1994, 25(6):1181-1188.
2.Mayo NE, Wood-Dauphinee S, Cote R, Durcan L, Carlton J: Activity, participation, and quality of life 6 months poststroke. Archives of Physical Medicine and Rehabilitation 2002, 83(8):1035-1042.
3.Billinger SA, Coughenour E, Mackay-Lyons MJ, Ivey FM: Reduced cardiorespiratory fitness after stroke: Biological consequences and exercise-induced adaptations. Stroke Research and Treatment 2012, 2012:959120.
4.Adams RJ, Chimowitz MI, Alpert JS, et al: Coronary risk evaluation in patients with transient ischemic attack and ischemic stroke: A scientific statement for healthcare professionals from the stroke council and the council on clinical cardiology of the American Heart Association/American Stroke Association. Circulation 2003, 108(10):1278–1290.
5.Mozaffarian D, Benjamin EJ, Go AS, et al: Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation 2016, 133(4):e38–e360.
6.Billinger SA, Arena R, Bernhardt J, et al: Physical activity and exercise recommendations for stroke survivors: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014, 45(8):2532–2553.
7.Caspersen CJ, Powell KE, Christenson GM: Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Reports 1985, 100(2): 126–131.
8.Livingston-Thomas J, Nelson P, Karthikeyan S, Antonescu S, Jeffers MS, Marzolini S, Corbett D: Exercise and environmental enrichment as enablers of task-specific neuroplasticity and stroke recovery. Neurotherapeutics 2016, 13(2):395-402.
9.Pin-Barre C, Laurin J: Physical exercise as a diagnostic, rehabilitation, and preventive tool: Influence on neuroplasticity and motor recovery after stroke. Neural Plasticity 2015, 2015:608581.
10.Zheng HQ, Zhang LY, Luo J, Li LL, Li ML, Zhang QJ, Hu XQ: Physical exercise promotes recovery of neurological function after ischemic stroke in rats. International Journal of Molecular Sciences 2014, 15(6):10974-10988.
11.Graven C, Brock K, Hill K, Joubert L: Are rehabilitation and/or care coordination interventions delivered in the community effective in reducing depression, facilitating participation and improving quality of life after stroke? Disability and Rehabilitation 2011, 33(17-18):1501-1520.
12.Quaney BM, Boyd LA, McDowd JM, Zahner LH, He J, Mayo MS, Macko RF: Aerobic exercise improves cognition and motor function poststroke. Neurorehabilitation and Neural Repair 2009, 23(9): 879–885.
13.Zedlitz AM, Rietveld TC, Geurts AC, Fasotti L: Cognitive and graded activity training can alleviate persistent fatigue after stroke: a randomized, controlled trial. Stroke 2012, 43(4):1046-1051.
14.Pang MY, Eng JJ, Dawson AS, Gylfadottir S: The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a metaanalysis. Clinical Rehabilitation 2006, 20(2):97-111.
15.Veerbeek JM, Koolstra M, Ket JC, van Wegen EE, Kwakkel G: Effects of augmented exercise therapy on outcome of gait and gait-related activities in the first 6 months after stroke: a meta-analysis. Stroke 2011, 42(11):3311-3315.
16.M. Ploughman: Exercise is brain food: the effects of physical activity on cognitive function. Developmental Neurorehabilitation 2008, 11(3): 236–240..
17.Zanette EM, Roberti C, Mancini G, Pozzilli C, Bragoni M, Toni D: Spontaneous middle cerebral artery reperfusion in ischemic stroke. A follow-up study with transcranial Doppler. Stroke 1995, 26(3):430-433.
18.Ma J, Zhao L, Nowak TS Jr: Selective, reversible occlusion of the middle cerebral artery in rats by an intraluminal approach. Optimized filament design and methodology. Journal of Neuroscience Methods 2006, 156(1-2):76-83.
19.Auriat AM, Grams JD, Yan RH, Colbourne F: Forced exercise does not improve recovery after hemorrhagic stroke in rats. Brain Research 2006, 1109:183-191.
20.Leasure JL, Grider M: The effect of mild post-stroke exercise on reactive neurogenesis and recovery of somatosensation in aged rats. Experimental Neurology 2010, 226(1):58-67.
21.Chen CC, Wang YL, Chang CP: Remarkable cell recovery from cerebral ischemia in rats using an adaptive escalator-based rehabilitation mechanism. Plos One 2019, 14(10): e0223820.
22.Basso JC, Morrell JI: The medial prefrontal cortex and nucleus accumbens mediate the motivation for voluntary wheel running in the rat. Behavioral Neuroscience 2015;129(4):457–472.
23.Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge AB, Day HE, Fleshner M. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behavioural Brain Research 2011, 217(2):354–362.
24.Zhao XR, Aronowski J, Liu SJ, Schallert T, Zhang J, Strong R, Ou ZS, Nguyen T, Grotta JC: Wheel-running modestly promotes functional recovery after a unilateral cortical lesion in rats. Behavioural Neurology 2005, 16(1):41-49.
25.Waters RP, Renner KJ, Pringle RB, Summers CH, Britton SL, Koch LG, Swallow JG: Selection for aerobic capacity affects corticosterone, monoamines and wheel-running activity. Physiology & Behavior 2008, 93(4-5):1044-1054.
26.Leasure JL, Jones M: Forced and voluntary exercise differentially affect brain and behavior. Neuroscience 2008, 156(3):456-465.
27.Hayes K, Sprague S, Guo M, Davis W, Friedman A, Kumar A, Jimenez DF, Ding Y: Forced, not voluntary, exercise effectively induces neuroprotection in stroke. Acta Neuropathologica 2008, 115(3):289-296.
28.Ke Z, Yip SP, Li L, Zheng X-X, Tong K-Y: The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: A rat brain ischemia model. Plos One 2011, 6(2): e16643.
29.Ploughman M, Granter-Button S, Chernenko G, Attwood Z, Tucker BA, Mearow KM, Corbett D: Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia. Brain Research 2007, 1150:207-216.
30.Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, Chang H, McEwen BS, Nishijima T: BDNF induction with mild exercise in the rat hippocampus. Biochemical and Biophysical Research Communications 2007, 358(4):961-967.
31.Chen C-C, Chang M-W, Chang C-P, Chang W-Y, Chang S-C, Lin M-T, Yang C-L: Improved infrared-sensing running wheel systems with an effective exercise activity indicator. Plos One 2015, 10(4):e0122394.
32.Chen CC, Yang CL, Chang CP: An innovative running wheel-based mechanism for improved rat training performance. Jove-Journal of Visualized Experiments 2016(115).
33.Chen CC, Chang CP, Yang CL: An adaptive fall-free rehabilitation mechanism for ischemic stroke rat patients. Scientific Reports 2019, 9(1):984.
34.Ploughman M, Granter-Button S, Chernenko G, Tucker BA, Mearow KM, Corbett D: Endurance exercise regimens induce differential effects on brain-derived neurotrophic factor, synapsin-I and insulin-like growth factor I after focal ischemia. Neuroscience 2005, 136(4):991-1001.
35.Longa E. Z. WPR, Carlson S., Cummins R.: Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989, 20:84-91.
36.Chen JL, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M: Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001, 32(11):2682-2688.
37.Schaar KL, Brenneman MM, Savitz SI: Functional assessments in the rodent stroke model. Experimental & translational stroke medicine 2010, 2(1):13.
38.Chen JL, Li Y, Wang L, Zhang ZG, Lu DY, Lu M, Chopp M: Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001, 32(4):1005-1011.
39.Swanson RA, Morton MT, Tsaowu G, Savalos RA, Davidson C, Sharp FR: A semiautomated method for measuring brain infarct volume. Journal of Cerebral Blood Flow and Metabolism 1990, 10(2):290-293.
40.Honorio JER, Vasconcelos GS, Rodrigues FTS, Sena JG, Barbosa JM, Aguiar CCT, Leal L, Soares PMG, Woods DJ, Fonteles MMD et al: Monocrotaline: Histological damage and oxidant activity in brain areas of mice. Oxidative Medicine and Cellular Longevity 2012, 2012:697541.
41.Yang YR, Wang RY, Wang PSG, Yu SM: Treadmill training effects on neurological outcome after middle cerebral artery occlusion in rats. Canadian Journal of Neurological Sciences 2003, 30(3):252-258.
42.Li Y, Chen J, Wang L, Lu M, Chopp M: Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 2001, 56(12):1666-1672.
43.Chen J, Zhang C, Jiang H, Li Y, Zhang L, Robin A, Katakowski M, Lu M, Chopp M: Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 2005, 25(2):281-290.
44.Zhang L, Schallert T, Zhang ZG, Jiang Q, Arniego P, Li QJ, Lu M, Chopp M: A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. Journal of Neuroscience Methods 2002, 117(2):207-214.
45.Stroemer RP, Kent TA, Hulsebosch CE: Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 1995, 26(11):2135-2144.
46.Allred RP, Jones TA: Maladaptive effects of learning with the less-affected
forelimb after focal cortical infarcts in rats. Experimental Neurology 2008, 210(1):172-181.
47.Rogers DC, Campbell CA, Stretton JL, Mackay KB: Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke 1997, 28(10):2060-2065.
48.Barth TM, Jones TA, Schallert T: Functional subdivisions of the rat somatic sensorimotor cortex. Behavioural Brain Research 1990, 39(1):73-95.
49.Modo M, Stroemer RP, Tang E, Veizovic T, Sowninski P, Hodges H: Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. Journal of Neuroscience Methods 2000, 104(1):99-109.
50.Erdo F, Berzsenyi P, Ne´met L, Andra´si F: Talampanel improves the functional deficit after transient focal cerebral ischemia in rats. A 30 day follow up study. Brain Research Bulletin 2005, 68(4):269-276.
51.Boltze J, Kowalski I, Fo¨rschler A, Schmidt U, Wagner D, Lobsien D, Emmrich J, Egger D, Kamprad M, Blunk J, Emmrich F (2006) The stairway: a novel behavioral test detecting sensomotoric stroke deficits in rats. Artificial Organs 2006, 30(10):756–763.
52.Tuor UI, Zhao ZH, Barber PA, Qiao M: Recurrent mild cerebral ischemia: enhanced brain injury following acute compared to subacute recurrence in the rat. Bmc Neuroscience 2016, 17(1):28.
53.Lowrance SA, Ionadi A, McKay E, Douglas X, Johnson JD: Sympathetic nervous system contributes to enhanced corticosterone levels following chronic stress. Psychoneuroendocrinology 2016, 68:163-170.
54.Seo H, Park CH, Choi S, Kim W, Jeon BD, Ryu S: Effects of voluntary exercise on apoptosis and cortisol after chronic restraint stress in mice. Journal of exercise nutrition & biochemistry 2016, 20(3):16-23.
55.Sapolsky RM: Glucocorticoid toxicity in the hippocampus: reversal by supplementation with brain fuels. The Journal of neuroscience : the official journal of the Society for Neuroscience 1986, 6(8):2240-2244.
56.Hackney AC: Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Expert review of endocrinology & metabolism 2006, 1(6):783-792.
57.Fry AC, Steinacker JM, Meeusen R: Endocrinology of overtraining. In: The Endocrine System in Sports and Exercise. 2005: 578-599.
58.Chen CC, Chang MW, Chang CP, Chan SC, Chang WY, Yang CL, Lin MT: A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model. Brazilian Journal of Medical and Biological Research 2014, 47(10):858-868.
59.Brown DA, Johnson MS, Armstrong CJ, Lynch JM, Caruso NM, Ehlers LB, Fleshner M, Spencer RL, Moore RL: Short-term treadmill running in the rat: what kind of stressor is it? Journal of Applied Physiology 2007, 103(6):1979-1985.
60.Engesser-Cesar C, Anderson AJ, Basso DM, Edgerton VR, Cotman CW. Voluntary wheel running improves recovery from a moderate spinal cord injury. Journal of Neurotrauma 2005, 22(1):157–171.
61.Liebetanz D, Baier PC, Paulus W, Meuer K, Bahr M, Weishaupt JH. A highly sensitive automated complex running wheel test to detect latent motor deficits in the mouse MPTP model of Parkinson’s disease. Experimental Neurology 2007, 205(1):207 –213.
62.Liebetanz D, Merkler D. Effects of commissural de- and remyelination on motor skill behaviour in the cuprizone mouse model of multiple sclerosis. Experimental Neurology 2006, 202(1):217–224
63.Karvat G, Kimchi T. Systematic autistic-like behavioral phenotyping of 4 mouse strains using a novel wheel-running assay. Behavioural Brain Research 2012, 233(2):405–414.
64.Brazzelli M, Saunders DH, Greig CA, Mead GE: Physical fitness training for stroke patients. Cochrane Database of Systematic Reviews 2011, (11):CD003316.
65.Tang A, Sibley KM, Thomas SG, McIlroy WE, Brooks D: Maximal exercise test results in subacute stroke. Archives of Physical Medicine and Rehabilitation 2006, 87(8):1100-1105.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-09-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw