進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0807201917464600
論文名稱(中文) 細懸浮微粒(PM2.5)移動污染源改善策略探討-以高雄市區為例
論文名稱(英文) Improvement Strategies of Fine Particulate Matter (PM2.5) from Mobile Pollution Source- Case Study in Urban Area of Kaohsiung
校院名稱 成功大學
系所名稱(中) 交通管理科學系
系所名稱(英) Department of Transportation & Communication Management Science
學年度 107
學期 2
出版年 108
研究生(中文) 蔡承庭
研究生(英文) Cheng-Ting Tsai
學號 R56064112
學位類別 碩士
語文別 英文
論文頁數 113頁
口試委員 指導教授-張有恆
口試委員-鄭永祥
口試委員-徐村和
口試委員-陳昭宏
口試委員-楊慧華
中文關鍵字 細懸浮微粒  空氣污染  模糊德菲爾法  模糊層級分析法 
英文關鍵字 PM2.5  Air pollution  FDM  FAHP 
學科別分類
中文摘要 隨著高度工業化與經濟迅速發展,空氣污染日趨嚴重,對健康、環境、醫療成本等方面造成許多負面影響,也讓空氣污染成為國際間關注的議題。在臺灣空氣污染防制法規定的六種空氣污染物中,只有PM2.5的濃度是高於法定標準的,醫學研究已證實暴露於高濃度的PM2.5中會增加呼吸道疾病及心血管疾病的發生率,甚至與肺腺癌有關。PM2.5的減量改善策略在臺灣實已為不可忽視的重要議題,其中高雄地區為臺灣六都裡PM2.5污染最為嚴重的區域,又考量移動污染源在PM2.5中的比例以及其對健康的直接影響,故本研究將以舊高雄市區為例,探討PM2.5移動污染源的改善策略。
先前許多研究提出了PM2.5的管理政策及減量方法,但多為針對單一策略的研究。但PM2.5一旦進入人體即無法排出,政策制定者必須在有限的時間與資金裡,做出最佳的決定來減少PM2.5對人類健康的影響。本研究透過文獻回顧並參考世界各國的管理及改善策略,透過模糊德菲爾法(FDM)分析後,歸納出PM2.5移動污染源的18項改善策略,並將這些策略分成五個構面,分別是:法規管制、政策推廣、社會教育、環境及共享經濟以及科技演變,接著透過模糊層次分析法(FAHP)及可行性分析找出各項改善策略相對重要度及可實現性。
研究結果發現「制定新排放標準」、「淘汰老舊柴油車」、「車輛定期檢驗」、「電動車補貼優惠」、「廣設電動車充電站」以及「開發新型電動車電池」等六項策略具有高重要性和高可行性,可以列為優先發展的策略,本研究之結果能幫助決策者釐清各項政策的優先順序及可行性,在適當的時機、利用有限的資源做出最好的決策。
英文摘要 In recent years, with the industrialization and rapid development of the economy, the serious air pollution has caused many negative impacts on health and environment. In Taiwan, all air pollutants have already been in control except PM2.5. Exposure to high concentrations of PM 2.5, not only increases the risk of all-cause mortality and the risk of cardiopulmonary diseases, it is also associated with lung adenocarcinoma. From the above, lowering PM2.5 emission in Taiwan is an important topic. Moreover, Kaohsiung is the most serious polluted area among six main municipalities. Considering proportion of PM2.5 and affection to human health, this research will focus on the mobile pollution source and make a case study in Kaohsiung.
Many improvement strategies of PM2.5 have been suggested by former research. But most of them are reduction methods for a single strategy. However, there is no solution to PM 2.5 that has already been inhaled into the body currently. Decision makers have to reduce effects of exposure to PM2.5 with limited time and funds. They must be able to prioritize strategies in order to achieve best results. This research reviews literatures and related policies around the world to formulate strategies of mobile source PM2.5. By implementing FDM with experts’ opinions, this research divides 18 improvement strategies into 5 dimensions (Legislative Regulation, Policy Promotion, Social Education, Environment & Sharing Economy and Technology Change) and identify the priority and achievability by FAHP and IAA. This research finds out that ‘new emission standard’, ‘old diesel vehicle elimination’, ‘examination of vehicles’, ‘electric vehicles subsidy’, ‘development of charging stations’ and ‘novel battery in electric vehicles’ are important and highly feasible.
論文目次 Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 8
1.3 Research Framework 8
1.4 Research Scope 10
Chapter 2 Literature Review 11
2.1 Background - PM2.5 11
2.1.1 Definition of PM2.5 11
2.1.2 Standard of PM2.5 11
2.2 Health effects of exposure to PM2.5 14
2.2.1 Mortality effect 14
2.2.2 Cardiovascular disease 15
2.2.3 Premature birth 16
2.2.4 Summary 17
2.3 Role of mobile pollution source on PM2.5 levels 17
2.3.1 Portion of mobile pollution source 17
2.3.2 Severity of mobile pollution source 18
2.3.3 Summary 19
2.4 Air pollution policies about mobile pollution source around the world 20
2.4.1 Taiwan 20
2.4.2 South Korea 24
2.4.3 Japan 26
2.4.4 Europe Union (EU) 28
2.5 Related literature, improvement strategies of mobile pollution source 31
2.5.1 Non‐exhaust sources improvement 31
2.5.2 New exposure indicator 32
2.5.3 Non-Road Mobile Machinery (NRMM) 32
2.5.4 Roadside Planting design 33
2.5.5 Development of battery in electric vehicles 35
2.5.6 Diesel engine improvement 35
2.5.7 Summary 36
2.6 PESTLE analysis and its variation 36
2.7 Summary 37
Chapter 3 Research Design and Methodology 38
3.1 Framework of PM2.5 improvement strategies 38
3.1.1 Legislative Regulation 39
3.1.2 Policy Promotion 40
3.1.3 Social Education 41
3.1.4 Environment& Sharing Economy 42
3.1.5 Technology Change 43
3.2 SLEPT Analysis 44
3.3 Fuzzy Delphi Method (FDM) 45
3.3.1 Introduction 45
3.3.2 Process 45
3.4 Analytic Hierarchy Process (AHP) 47
3.5 Fuzzy Analytic Hierarchy Process (FAHP) 48
3.5.1 Introduction 48
3.5.2 Process 49
3.6 Improvement Achievability Analysis 51
Chapter 4 Analysis and Results 52
4.1 Fuzzy Delphi Method (FDM) results 52
4.1.1 Questionnaire information 52
4.1.2 Threshold value selection 54
4.1.3 Results of first phase FDM 55
4.1.4 Results of second phase FDM 59
4.2 Fuzzy Analytic Hierarchy Process (FAHP) results 61
4.2.1 Questionnaire information 61
4.2.2 Consistency Ratio (CR) test 62
4.2.3 Analysis for dimensions 64
4.3 Achievability analysis results 69
4.3.1 Questionnaire information 69
4.3.2 Results of achievability analysis 69
4.3.3 Comprehensive analysis of importance and achievability 71
Chapter 5 Conclusions and suggestions 75
5.1 Research conclusions 75
5.1.1 Identify preliminary strategies of mobile source PM2.5 75
5.1.2 Formulate appropriately strategies of mobile source PM2.5 75
5.1.3 Calculate relative importance & achievability of strategies 76
5.2 Research suggestions 76
5.2.1 Suggestions to citizens 76
5.2.2 Suggestions to central government 77
5.2.3 Suggestions to local government 78
5.2.4 Suggestions to future researchers 78
5.3 Research contributions 79
References 80
Appendix A 89
Appendix B 99
Appendix C 100
參考文獻 1.Akimoto, H. (2017). Overview of Policy Actions and Observational Data for PM2. 5 and O3 in Japan: A Study of Urban Air Quality Improvement in Asia.
2.Ahmed, M. Youssef. (2016). PESTLE and SWOT analysis Strategies, retrieved from : https://www.linkedin.com/pulse/pestle-swot-analysis-strategies-ahmed-maher-copc-ccxp-pmp-
3.Autrup, H. (2010). Ambient air pollution and adverse health effects. Procedia-Social and Behavioral Sciences, 2(5), 7333-7338.
4.Bari A. M., & Warren B.Kindzierski, W. B. (2018). Characterization of air quality and sources of fine particulate matter (PM2.5) in the City of Calgary, Canada. Atmospheric Pollution Research, 9(3), 534-543.
5.Bodin, L., & Gass, S. I. (2003). On teaching the analytic hierarchy process. Computers & operations research, 30(10), 1487-1497.
6.Borken‐Kleefeld (2012). The potential for further controls of emissions from mobile sources in Europe. Service Contract on Monitoring and Assessment of Sectorial Implementation Actions.
7.Brauer, M., Amann, M., Burnett, R.T., Cohen, A., Dentener, & F., Ezzati, M. (2012). Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol. 46, 652–660.
8.Brook, R.D., Rajagopalan, S., Pope, C.A., Brook, J.R., Bhatnagar, A., & Diez-Roux, A.V. (2010). Particulate matter air pollution and cardiovascular disease an update to the scientific statement from the American Heart Association. Circulation, 121 (21), 2331–2378.
9.Buckley, J.J. (1985). Fuzzy hierarchical analysis, Fuzzy Sets & Systems, 17(3), 233‐247.
10.Cao, C., Jiang, W., Wang, B., Fang, J., Lang, J., Tian, G., Jiang, J., & Zhu, T.F. (2014). Inhalablemicroorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smogevent. Environ. Sci. Technol, 48, 1499-1507.
11.Carter, R., Cruden, A., & Hall, P. J. (2012). Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle. IEEE Transactions on Vehicular Technology, 61(4), 1526-1533.
12.Chang, D. (1992). Extent analysis and synthetic decision, optimization techniques and applications, Singapore: World Scientific.,1, 352.
13.Chang Y. H., (1998). Transportation planning evaluation and decision making: discussion and application of fuzzy theory. Taiwan: Huatai.
14.Chang, Y. H., & Wong, K. M. (2012). Human risk factors associated with runway incursions. Journal of Air Transport Management, 24, 25-30.
15.Chen, S. Y., & Chan, C. C. (2016). Blood Pressure and Cardiovascular Metrics with Exposures to Ambient Particles. Formosan Journal of Medicine, 20(4), 387-395.
16.Chen, Y., Schleicher, N., Chen, Y., Chai, F., & Norra, S. (2014). The influence of governmental mitigation measures on contamination characteristics of PM2. 5 in Beijing. Science of the Total Environment, 490, 647-658.
17.Collins, R. (2012). Is there a better way to analyse the business environment. MBA Report, str, 1-71.
18.Correia, A. W., Pope III, C. A., Dockery, D. W., Wang, Y., Ezzati, M. & Dominici F. (2013). The Effect of Air Pollution Control on Life Expectancy in the United States: An Analysis of 545 US counties for the period 2000 to 2007. Epidemiology, 24(1), 23–31.
19.Csutora, R., & Buckley, J. J. (2001). Fuzzy hierarchical analysis: the Lambda-Max method. Fuzzy sets and Systems, 120(2), 181-195.
20.Dockery, D. W., & Pope III, C. A. (2014). Lost life expectancy due to air pollution in China. Risk Dialogue Magazine. Health risk factors major Emerg. Mark. 5.
21.Duong, T. T., & Lee, B. K. (2011). Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 92(3), 554-562.
22.Environmental Protection Administration, EY
23.Firnkorn, J., & Shaheen, S. (2016). Generic time-and method-interdependencies of empirical impact-measurements: A generalizable model of adaptation-processes of carsharing-users' mobility-behavior over time. Journal of Cleaner Production, 113, 897-909.
24.Gromke, C., Jamarkattel, N., & Ruck, B. (2016). Influence of roadside hedgerows on air quality in urban street canyons. Atmospheric Environment, 139, 75-86
25.Guo T., WangY., Zhao J., Zhang Y., Zhang H., Peng, Z., & Ma, X. (2018). The association between ambient PM2.5 exposure and the risk of preterm birth in China: A retrospective cohort study. Science of The Total Environment, 633(15), 1453-1459.
26.Hackmann D., & Sjöberg E. (2017). Ambient air pollution and pregnancy outcomes-a study of functional form and policy implications Air Qual. Atmosphere Health, 10(2), 1-9.
27.Hammond D. M., Dvonch J. T., Keeler G. J., Parker E. A., Kamal A. S., Barres J. A., Yip, F. Y., & Brakefield-Caldwell, W. (2008). Sources of ambient fine particulate matter at two community sites in Detroit, Michigan. Atmos Environ, 42, 720-732.
28.Harrison, R. M., Thornton, C. A., Lawrence, R. G., Mark, D., Kinnersley, R. P., & Ayres, J. G. (2002). Personal exposure monitoring of particulate matter, nitrogen dioxide, and carbon monoxide, including susceptible groups. Occup Environ Med, 59(10), 671-679.
29.Hsu, C. W., & Hu, A. H. (2008). Green supply chain management in the electric industry. International Journal of Environmental Science & Technology, 5(2), 205-216.
30.Huang, F., Pan, B., Wu J., Chen, E., & Chen, L. (2017). Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A meta-analysis. Oncotarget, 8(26), 43322–43331.
31.Index mundi, Japan - PM2.5 air pollution, mean annual exposure (micrograms per cubic meter), retrieved from : https://www.indexmundi.com/facts/indicators/EN.ATM.PM25.MC.M3/rankings
32.Ishikawa, A., Amagasa, T., Tamizawa, G., Totsuta, R. & Mieno, H. (1993). The max‐min Delphi method and fuzzy Delphi method via fuzzy integration, Fuzzy Sets & Systems, 55, 241‐253.
33.Jae-Yeon Jang et al. (2014). Development of intervention study to prevent health damage from particulate matter and yellow dust. Korea Centers for Disease Control and Prevention.
34.Janssen, N. A. H., Fischer, P., Marra, M., Ameling, C., & Cassee, F. R. (2013) Short-term effects of PM2.5, PM10 and PM2.5–10 on daily mortality in the Netherlands, Science of The Total Environment, 463–464, 20-26.
35.Japan automobile manufactures association. (2016). Report on environmental protection efforts.
36.Javanbarg, M. B., Scawthorn, C., Kiyono, J., & Shahbodaghkhan, B. (2012). Fuzzy AHP-based multicriteria decision making systems using particle swarm optimization. Expert Systems with Applications, 39(1), 960–966.
37.Ji, S., Cherry, C. R., Zhou, W., Sawhney, R., Wu, Y., Cai, S., & Marshall, J. D. (2015). Environmental justice aspects of exposure to PM2. 5 emissions from electric vehicle use in China. Environmental science & technology, 49(24), 13912-13920.
38.Kelly, F. J., & Zhu, T. (2016). Transport solutions for cleaner air. Science, 352(6288), 934-936.
39.KIHASA. (2017). Korea’s New Comprehensive Plan on Fine Dust and Its Implications for Policy and Research Suehyung Lee Associate Research Fellow.
40.Klir, G. J., & Folger, T. A. (1988). Fuzzy sets, uncertainty, and information.
41.Koo, M., Tsai, K. W., & Lin, S. C. (2017). Health Effects of Exposure to Fine Particulate Matter. Journal of Madicine and Health, 6(1), 13-22.
42.Kotler, P., & Klir, G. J., & Folger, T. A. (1988). Fuzzy sets Uncertainty and Information Prentice Hall. Englewood Clis, NJ.
43.Lee, A. H., Chen, W. C., & Chang, C. J. (2008). A fuzzy AHP and BSC approach for evaluating performance of IT department in the manufacturing industry in Taiwan. Expert systems with applications, 34(1), 96-107.
44.Lee, A. H., Kang, H. Y., & Wang, W. P. (2006). Analysis of priority mix planning for the fabrication of semiconductors under uncertainty. The International Journal of Advanced Manufacturing Technology, 28(3-4), 351-361.
45.Lee, S., Liu, W., Wang, Y. H., Russell A.G., & Edgerton E. S. (2008). Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmos Environ, 42, 4126-4137.
46.Lee, S., & Seo, K. K. (2016). A hybrid multi-criteria decision-making model for a cloud service selection problem using BSC, fuzzy Delphi method and fuzzy AHP. Wireless Personal Communications, 86(1), 57-75.
47.Lee, S. (2017). Korea’s New Comprehensive Plan on Fine Dust and Its Implications for Policy and Research.
48.Lee, P. C. (2011). Study on the Improvement of Available Battery Capacity in Electric Vehicles (Master's thesis). Retrieved from https://ndltd.ncl.edu.tw
49.Leung, C.Y. (2013). A CLEAN AIR PLAN FOR HONG KONG.
50.Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., & Adair-Rohani, H. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2224–2260.
51.Linstone, H. A., & Turoff, M., ed, 2002. The Delphi Method: Techniques and Applications, ISBN 0-201-04294-0.
52.Lin, H., Ratnapradipa, K., Wang X. J., Zhang Y. H., Xu, Y. J., Yao Z. J., Dong, G. H., Liu T., Clark J., Dick, R., Xiao J. P., Zeng, W. L., Li X., Qian Z. M., & Ma, W. J. (2017). Hourly peak concentration measuring the PM2.5-mortality association: Results from six cities in the Pearl River Delta study. Atmospheric Environment, 161, 27-33.
53.Litman, T. (2012). Evaluating non-motorized transportation benefits and costs.
54.Lung, S. H., & Cheng S. P. (2010). Taiwan Megacity Environmental Research---Environmental Impacts of Secondary Organic Aerosols (I).
55.Madsen, C., Rosland, P., Hoff, D.A., Nystad, W., Nafstad, P., & Næss, Ø.E. (2012). The short-term effect of 24-h average and peak air pollution on mortality in Oslo, Norway. Eur. J. Epidemiol, 27(9), 717-727.
56.Manigrasso, M., Natale, C., Vitali, M., Protano, C., & Avino, P. (2017). Pedestrians in traffic environments: Ultrafine particle respiratory doses. International journal of environmental research and public health, 14(3), 288.
57.Martilla, J. A., & James, J. C. (1977). Importance-performance analysis. Journal of marketing, 41(1), 77-79.
58.Meister, K. Johansson, C. & Forsberg, B. (2012). Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ Health Perspect, 120, 431–436.
59.MOEJ. (2007). Report: Survey of the Exposure of Fine Particles.
60.MOEJ. (2013). On Equivalence Evaluation of PM2.5 Automatic Measurement Instruments.
61.MOEJ. (2016). On handling of measured values related to indexes showing properly the environmental improvement effects of photochemical oxidants. Notice for departments in charge of atmospheric environment in prefectures and cities.
62.Natasha Khan (2015). Air Bubble Shield For Dangerous Smog To Be Tested In Beijing. Retrieved from : https://www.bloomberg.com/news/articles/2015-05-13/air-bubble-shield-for-dangerous-smog-to-be-tested-in-beijing
63.NIER & NASA. (2017). South Korean Naional Institute of Environmental Research & US National Aeronautics and Space Administration. Introduction to the KORUS‐AQ Rapid Science Synthesis Report.
64.Oanh, N. T. K., Thiansathit, W., Bond, T. C., Subramanian, R., Winijkul, E., & Paw-armart, I. (2010). Compositional characterization of PM2. 5 emitted from in-use diesel vehicles. Atmospheric Environment, 44(1), 15-22.
65.Park, D. U., & Ha, K. C. (2008). Characteristics of PM10, PM2. 5, CO2 and CO monitored in interiors and platforms of subway train in Seoul, Korea. Environment International, 34(5), 629-634.
66.PESTEL analysis webside. What is PESTLE Analysis? A Tool for Business Analysis. Retrieved from : https://pestleanalysis.com/what-is-pestle-analysis/
67.Peter, A., Klot, S.V., Heier, M., Trentinaglia., Hormann, A., Wichmann, E.H., & Lowel, H. (2004). Exposure to Traffic and the Onset of Myocardial Infarction. The New England Journal of Medicine, 351, 1721-1730.
68.Pope, P., III. (2007). Mortality effects of longer term exposures to fine particulate air pollution: review of recent epidemiological evidence. Inhalation Toxicology, 19, 33–38.
69.Rastogi, N. I. T. A. N. K., & Trivedi, M. K. (2016). PESTLE technique–a tool to identify external risks in construction projects. International Research Journal of Engineering and Technology (IRJET), 3(1), 384-388.
70.Requia W. J., Higgins C. D., Adams, M.D., Mohamed, M., & Koutrakis, P. (2018). The health impacts of weekday traffic: A health risk assessment of PM2.5 emissions during congested periods. Environ Int, 111, 164-176.
71.Rizzo M. J. & Scheff, S. (2007). PA: Fine particulate source apportionment using data from the US EPA speciation trends network in Chicago, Illinois: Comparison of two source apportionment models. Atmos Environ , 41, 6276-6288.
72.Richmond-Bryant, J., Saganich, C., Bukiewicz, L., & Kalin, R. (2009). Associations of PM2. 5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals. Science of the Total Environment, 407(10), 3357-3364.
73.Romero, H., Ihl, M., Rivera, A., Zalazar, P. E. D. R. O., & Azocar, P. (1999). Rapid urban growth, land-use changes and air pollution in Santiago, Chile. Atmospheric Environment, 33(24-25), 4039-4047.
74.Rückerl, R., Schneider, A., Breitner, S., Cyrys, J., & Peters, A. (2011). Health effects of particulate air pollution: A review of epidemiological evidence. Inhalation Toxicology, 23(10), 575.
75.Ryou, H. G., Heo, J., & Kim S. Y. (2018). Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea. Environment Pollution, 240, 963-972.
76.Saaty, T. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill International Book Company.
77.Salomon, J. A., Vos, T., Hogan, D. R., Gagnon, M., Naghavi, M., Mokdad, A., Begum, N., Shah, R., Karyana, M., & Kosen, S. (2013). Common values in assessing healthoutcomes from disease and injury: disability weights measurement study forthe Global Burden of Disease Study. Lancet, 380, 2129-2143.
78.Sheng-Hshiung, T., Gwo-Hshiung, T., & Kuo-Ching, W. (1997). Evaluating tourist risks from fuzzy perspectives. Annals of Tourism Research, 24(4), 796-812.
79.Shi, H., Fan, J., & Zhao, D. (2017). Predicting household PM2. 5-reduction behavior in Chinese urban areas: An integrative model of Theory of Planned Behavior and Norm Activation Theory. Journal of cleaner production, 145, 64-73.
80.Shi, L., Zanobetti, A., Kloog, I., Coull, B.A., Koutrakis, P., Melly, S .J., & Schwartz, J. D. (2015). Low-concentration PM2. 5 and mortality: estimating acute and chronic effects in a population-based study. Environ. Health Perspect, 124, 46-52.
81.Stieb, D. M., Judek, S., van Donkelaar, A., Martin, R. V., Brand, K., Shin, H. H., Burnett, R. T., & Smith-Doiron, M. H. (2015). Estimated public health impacts of changes in concentrations of fine particle air pollution in Canada, 2000 to 2011. Can J Public Health, 106(6), 362-8.
82.Taiwan Environment Imformation Center. (2018). Retrieved from https://e-info.org.tw/node/209316
83.Taiwan EPA. (2016). Taiwan Emission Data System 9.0.
84.Taiwan EPA. (2017). Air Quality Annual Report of R.O.C. (Taiwan).
85.Taiwan EPA. (2018). Air Quality Annual Report of R.O.C. (Taiwan).
86.Taiwan EPA. (2019). Air Quality Annual Report of R.O.C. (Taiwan).
87.Tang ,W. L. (2017). Factors Affecting Haze Pollution of PM2.5 in Central Taiwan Using Multivariate Analysis (Master's thesis). Retrieved from https://e-info.org.tw/node/209316
88.TEIA. (2018). PM2.5 concemtration in Taiwan. Retrieved from https://e-info.org.tw/node/216827
89.TEIA. (2019). City air quality ranking in Taiwan. Retrieved from https://e-info.org.tw/node/216827
90.Theaker, A. (2017). What is public relations?. The Public Relations Strategic Toolkit, 17-27.
91.Tong, Z., Baldauf, R. W., Isakov, V., Deshmukh P., & Max Zhang K. (2015). Roadside vegetation barrier designs to mitigate near-road air pollution impacts. Science of the Total Environment, 541, 920–927.
92.Tsai, D. H. (2008). Urban Air Pollution: Formation, Exposure and Health Effects of Traffic Emission (Master's thesis). Retrieved from https://ndltd.ncl.edu.tw
93.Tsaur, S. H., Chang, T. Y., & Yen, C. H. (2002). The evaluation of airline service quality by fuzzy MCDM. Tourism management, 23(2), 107-115.
94.Van Winkle, L.S., Bein, K., & Anderson, D. (2015). Biological dose response to PM2.5: effect of particle extraction method on platelet and lung responses. Toxicol. Science, 143, 349-359.
95.Vu, T. V., Delgado-Saborit, J. M., & Harrison, R. M. (2015). Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmospheric Environment, 122, 114-132.
96.Wang F., Li, Z., Zhang, K., Di B. F., & Hu, B. M. (2016) An overview of non-road equipment emissions in China. Atmospheric Environment, 132, 283-289.
97.Wania A., Bruse M., Blond N., & Weber, C. (2010). Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations. Journal of Environmental Management, 94, 91-101.
98.Woosuk Jung. (2017). South Korea’s Air Pollution Gasping for Solutions, Institute for Security and Development Policy, NO.199.
99.World Health Organization (2005). Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide.
100.World Health Organization (2018). Global Ambient Air Quality Database, ; Working Papers; World Health Organization: Geneva, Switzerland.
101.Wu, H. W., Hsu, T. T., Fan, C. M., & He, P. H. (2018). Reduction of smoke, PM2. 5, and NOX of a diesel engine integrated with methanol steam reformer recovering waste heat and cooled EGR. Energy Conversion and Management, 172, 567-578.
102.Wu, J., Houston, D., Lurmann, F., Ong, P., & Winer, A. (2009). Exposure of PM2. 5 and EC from diesel and gasoline vehicles in communities near the Ports of Los Angeles and Long Beach, California. Atmospheric Environment, 43(12), 1962-1971.
103.Xing, Y. F., Xu, Y. H., Shi, M. H., & Xin, Y. (2016). The impact of PM2.5 on the human respiratory system , Journal of Thoracic Disease, 8(1), 69-74.
104.Xu, L. M., Jin, T. S., Fu, X. M., Chen, D., & Yi, Z. Q. (2014). Study on PM10 exposure and health risk assessment of PAHs at bus stops in Tianjin, China. Acta Scientiae Circumstantiae, 34( 8), 1906-1911
105.Yamamoto, K., Yamauchi, K., Takada, N., Misawa, M., Furutani, H., & Shinozaki, O. (2011). Lattice Boltzmann simulation on continuously regenerating diesel filter. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1945), 2584-2591.
106.Yang B., & Xiao, C. (2018). PM2.5 exposure significantly improves the exacerbation of A549 tumor-bearing CB17-SCID mice. Environ Toxicol Pharmaco, 60, 169-175.
107.Yang, H., Chen, J., Wen, J., Tian, H., & Liu, X. (2016). Composition and sources of PM2. 5 around the heating periods of 2013 and 2014 in Beijing: Implications for efficient mitigation measures. Atmospheric Environment, 124, 378-386.
108.Yang, S. P. (2017). The Planting Design Effects on Near-road Particulate Matter Concentration (Master's thesis). Retrieved from https://ndltd.ncl.edu.tw
109.Yang, Y. R. (2017). Assessment on Fine Particulate Matter Control Strategy for Airborne Concentration Improvement in Taiwan (Master's thesis). Retrieved from https://ndltd.ncl.edu.tw
110.Yeh, C. H., & Chang, Y. H. (2009). Modeling subjective evaluation for fuzzy group multicriteria decision making. European Journal of Operational Research, 194(2), 464-473.
111.Yitshak-Sade, M., Novack, V., Ifergane, G., Horev, A., & Kloog, I. (2015). Air pollution and ischemic stroke among young adults. Stroke, 46 (12), 3348–3353.
112.Zadeh, L. A. (1968). Probability measures of fuzzy events. Journal of mathematical analysis and applications, 23(2), 421-427.
113.Zahedi, F. (1986). The analytic hierarchy process—a survey of the method and its applications. interfaces, 16(4), 96-108.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw