進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0807201906020700
論文名稱(中文) 鎳鈦形狀記憶合金應用於彈性髓內釘之分析與探討
論文名稱(英文) Application of nickel titanium shape memory alloy in elastic stable intramedullary nailing
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 李佩淵
研究生(英文) Pei-Yuan Lee
學號 P88991050
學位類別 博士
語文別 英文
論文頁數 103頁
口試委員 指導教授-胡晉嘉
召集委員-蘇芳慶
口試委員-張志涵
口試委員-陳文正
口試委員-楊岱樺
口試委員-端木和頤
口試委員-朱旆億
中文關鍵字 彈性髓內釘  鎳鈦形狀記憶合金  鈦合金  不銹鋼  長骨骨幹骨折 
英文關鍵字 elastic stable intramedullary nail  Nitinol  titanium  stainless steel  diaphyseal fracture 
學科別分類
中文摘要 彈性髓內釘在目前臨床上常用來治療兒童與青少年之長骨骨幹骨折,或是髓內腔較小的患者之長骨骨折。彈性髓內釘之優勢包含手術傷口小、手術時間短與術後恢復快等等。彈性髓內釘之固定機制,有別於傳統之鎖固式髓內釘,為依靠兩側對稱之髓內釘與髓腔內壁產生之摩擦力來達到穩定之功效。目前臨床上使用彈性髓內釘來治療骨折雖然有一定之成功率,但是對於負重較重之患部,則失敗率相對較高。鈦合金與不銹鋼為傳統上用來製造彈性髓內釘之合金,除此之外,鎳鈦形狀記憶合金在近幾年來受到廣泛的注意與討論,因為鎳鈦合金具有獨特之形狀記憶特性與超彈性。在骨科應用上,鎳鈦合金骨板骨釘已經被應用於受力較低部位之骨折髓外固定,但是對於適合髓內固定負載較大之下肢骨折,則相關之力學研究甚少。此外,在生物相容性方面,鎳鈦合金雖然已經應用在許多醫療內植物,但是對於鎳鈦合金在長骨髓內之病理組織反應相關之研究甚為少見,鎳鈦合金髓內釘是否影響長骨骨折之癒合仍無直接量化之證據。所以本研究之目的為探討鎳鈦形狀記憶合金應用於彈性髓內釘之基本力學機制與生物相容性,在力學方面,比較鎳鈦合金與目前臨床上使用的鈦合金與不銹鋼兩種合金之髓內釘,對於長骨骨幹骨折固定之差異。生物相容性方面,以動物實驗,比較鎳鈦合金與不銹鋼髓內釘對於兔子股骨缺損癒合之細胞與組織反應。
在研究方法部分,本研究分為動物(兔子)實驗與體外力學實驗兩個部分來進行。動物實驗部分,使用紐西蘭兔,分為兩組,分別植入外徑3 mm之鎳鈦合金與醫用不銹鋼棒(stainless 316 L)於兔子股骨,並在股骨遠端創造一個寬2 mm,長10 mm 之骨缺損。飼養4週、10週與16週後犧牲取出進行X光檢查與組織切片,並使用評分量表Comprehensive Histopathology (CH) Scoring System for biomaterial implants作為量化組織病理之依據。力學實驗方面,使用人工仿骨與電腦有限元素模型來進行分析與比較。人工仿骨為圓管形狀,長度250 mm,外徑35 mm,內徑11 mm,且在仿骨中央建立一寬10 mm之骨折間隙。力學實驗使用三種不同合金之髓內釘,包含鈦合金、不銹鋼與鎳鈦合金,對仿骨進行固定。髓內釘之弧度為π/2,半徑為260 mm,外徑為3 mm。有限元素模型為使用人體下肢脛骨之電腦斷層掃描影像為基礎,透過逆向工程之方式重建脛骨之三維模型。髓內釘之配置使用與仿骨相同;固定螺帽(end cap)在仿骨實驗中並無考慮,所以髓內釘之末端可以自由滑動,但是在有限元素模擬中則以一拘束等式來模擬有使用固定螺帽之情況。實驗測試方式為透過材料試驗機對仿骨施加一軸向負載直到骨折間隙完全關閉為止,比較指標為間隙完全關閉時所施加之負載與間隙開始滑動前之線性剛度。有限元素分析方面,施予150牛頓之軸向與彎曲負載模擬下肢脛骨在步態中的最大受力情況,計算負載施加以及移除過程中,骨頭與髓內釘之整體位移變化量,骨折間隙變化以及髓內釘與髓腔內壁之接處力等等,做為比較之指標。
動物實驗之結果顯示,術後4週之組織切片,鎳鈦合金與不銹鋼之病理組織學量化分數並無統計上之差異,且鎳鈦合金在術後10週與4週相比,大部分項目之CH分數皆有降低,有統計上的差異的有4項,在術後16週與4週相比,有統計上的差異項目也是四項,但在術後10週與16週相比,則皆無統計上之差異。顯示術後四週,骨缺損之修復即達相對穩定之狀態。不銹鋼在術後四週之CH總分數為19.5 (SD: 4),鎳鈦合金在術後4週、10週與16週之CH總分數分別為20.1 (SD: 3)、17.1 (SD: 3.1)與18.6 (SD: 1.9)分。
力學實驗方面,顯示鈦合金髓內釘對於施加負載之抵抗能力最佳,不銹鋼與鎳鈦合金則無顯著之差異;在線性剛度方面,三者則無顯著之差異。鈦合金、不銹鋼與鎳鈦合在間隙塌陷之前可承受之最大負載為272 (SD: 50)、144 (SD: 24)以及111 (SD: 15)牛頓;三者之線性剛度分別為199 (SD: 70)、264 (SD: 110)以及180 (SD: 64) N/mm。在有限元素分析方面,在無使用末端固定螺帽之情狀下,鈦合金髓內釘可以承受150牛頓之外力並且維持骨折間隙不塌陷;不銹鋼與鎳鈦合金則無法承受所施加之外力,而導致間隙關閉。在無使用末端固定螺帽之情狀下,此間隙之變化為不可逆之反應,即使負載移除後,間隙亦無法回復至原本之大小。軸向負載移除後,鈦合金、不銹鋼與鎳鈦合金之骨折間隙殘留縮短量為0.95、9.72與9.56 mm;彎曲負載移除後,鈦合金、不銹鋼與鎳鈦合金之骨折間隙殘留縮短量為0.79、8.28與7.27 mm。若是有使用固定螺帽,則鈦合金與不銹鋼髓內釘則無明顯之差異,但鎳鈦合金髓內釘雖然可以承受外來之負載,但是其骨折間隙之變化量為鈦合金與不銹鋼髓內釘之兩倍。在有使用固定螺帽之情況下,三者之間隙縮短在負載移除後依然有微小殘留量,但是明顯比無使用固定螺帽時為小。
本研究為第一個比較目前常用之鈦合金、不銹鋼與鎳鈦形狀記憶合金髓內釘之力學與骨頭病理組織學之差異,根據目前之結果,鈦合金髓內釘仍為優先選擇用來固定長骨骨幹骨折,尤其是在沒有使用固定螺帽的情況下。鎳鈦合金髓內釘雖然在病理組織學和力學上與不鏽鋼無顯著之差異,但是在本研究給予之條件下仍然無法超越鈦合金,但鎳鈦合金仍具有相當之潛力,若可以善用鎳鈦合金之形狀記憶及超彈性特性,針對特殊之骨折開發其專屬型態之髓內釘,仍有臨床上之優勢。
英文摘要 Elastic stable intramedullary nailing (ESIN) is currently used in the diaphyseal fractures of long bones, esp. in children or in non-weight bearing parts. The results of fracture unions with ESIN are acceptable, but relatively higher complication rate is noted in adolescents or in adults with heavy bodyweight. In order to decrease the complications, an innovative ESIN for treating diaphyseal fractures is still needed. Elastic nails made of nickel–titanium shape memory alloy (Nitinol) have unique shape memory and super-elasticity effects. In addition, Nitinol nails have been reported to control bone modeling in animal studies. However, the mechanical stability of Nitinol nail in the fixation of long bone fractures remains unclear. As Nitinol is rarely used in the intramedullary environment and the histopathology effect is unclear too. Hence, this study compared the biocompatibility of Nitinol nails with nails consisting of the traditional material, stainless steel 316L. Furthermore, the mechanical stability among nails made of three materials, namely Nitinol, titanium, and stainless steel for the intramedullary fixation of long bone fractures was also compared.
An animal study for biocompatibility as well as in vitro mechanical analysis, including experimental tests and finite element (FE) simulation, were used in this study. In the animal study, stainless and Nitinol nails were implanted into the femurs of rabbits with a defect created over the distal 1/3 of the femur. The rabbits were sacrificed at 4, 10, and 16 weeks after the nail implantation. The comprehensive histopathology (CH) scoring system for biomaterial implants was used to quantify the differences between the stainless and Nitinol groups.
In the mechanical test, the three materials had identical C-shapes (arc length: π/2 and radius: 260 mm). A cylindrical sawbone with 10-mm gap fixed with two C-shaped elastic nails was used to examine the stability of the nails. In the FE simulation, an FE model of a tibial fracture was developed based on the CT images available from National Institutes of Health (https://www.nih.gov/). Titanium, stainless, and Nitinol nails were used to fix the tibial fracture in the FE simulation. End capping for elastic nails was not used in the sawbone test, but was considered by using a constraint equation in the FE simulation.
The results of the animal study showed that the CH score of the Nitinol group was not significantly different from the stainless group at 4 weeks after implantation. Furthermore, the CH score of the Nitinol group at 10 weeks after the nail implantation was lower than at 4 weeks, and there was no significant difference at 16 weeks. The CH scores were 19.5 (SD: 4), 20.1 (SD: 3), 17.1 (SD: 3.1) and 18.6 (SD: 1.9) of the stainless nail at 4 weeks, Nitinol nail at 4 weeks, Nitinol nail at 10 weeks and Nitinol nail at 16 weeks, respectively.
Regarding mechanical stability, the stability appeared to depend on the presence or absence of the end cap. In the sawbone test, the titanium nail exhibited a higher ultimate force against the applied load than did the stainless steel and Nitinol nails before the gap completely closed. The average ultimate loads yielded by titanium, stainless steel, and Nitinol nails were 272 (SD: 50), 144 (SD: 24), and 111 (SD: 15) N, respectively. And the average linear stiffness yielded by titanium, stainless steel, and Nitinol nails were 199 (SD: 70), 264 (SD: 110), and 180 (SD: 64) N/mm, respectively.
In FE simulations, the titanium nail produced less gap shortening than did stainless steel and Nitinol nails without the end cap, while the difference in gap shortening between those nails was minor with the end cap. Furthermore, after offloading the residual gap deformation in the stainless and Nitinol nails without the end cap was obviously larger than that with end cap. The residual deformation of the gap after the axial compression being removed was 0.95, 9.72 and 9.56 mm in the titanium, stainless and Nitinol nails, respectively. Additionally, the residual deformation of the gap after bending being removed was 0.79, 8.28 and 7.27 mm in the titanium, stainless and Nitinol nails, respectively
This is the first study to investigate the histopathology and mechanical stability of Nitinol intramedullary nailing for the fixation of diaphyseal fractures. The animal study indicated that the Nitinol nail, as well as the stainless nail, is biocompatible and does not affect the healing process of the bone. Regarding mechanical stability, the titanium elastic nail is the better choice in managing diaphyseal long bone fractures when an end cap is not used. For Nitinol and stainless steel nails, an end cap should be used to prevent the nail from dropping out and to stabilize the fractured bone. Although the Nitinol demonstrated no advantage in stability compared to the traditional titanium nail based on the present conditions in this study, the application of an intramedullary Nitinol nail should be considered worthy for further development because of its shape memory and super-elasticity effect.
論文目次 Abstract ………………………………………………I
中文摘要 ……………………………………………………………………IV
誌謝 ……………………………………………………………………VII
Contents ………………………………………………VIII
List of Tables XI
List of Figures XII

Chapter 1 General Introduction 1
1.1 Introduction to elastic stable intramedullary nailing 1
1.1.1 Elastic stable intramedullary nailing 1
1.1.2 End cap on the titanium elastic nail 3
1.1.3 Theory of the elastic nail 4
1.2 Nail materials 4
1.2.1 316L stainless steel 5
1.2.2 Titanium alloy 5
1.2.3 Nickel-titanium shape memory alloy 6
1.3 Biocompatibility of Nitinol 8
1.4 Statement of problems and rationales regarding elastic nails 9
1.5 Literature review 10
1.5.1 Nitinol in animal studies 10
1.5.2 Titanium and stainless nails in mechanical studies
12
1.6 Finite element method 15
1.7 Motivation and objectives 16

Chapter 2 Animal Study 17
2.1 Nitinol and stainless nails 18
2.2 Surgical Procedure 19
2.3 Histopathology examination 23
2.4 Results of animal study 24
2.4.1 Results of radiographic and gross images 24
2.4.2 Results of histological images 27
2.4.3 Results of histopathology scoring 31

Chapter 3 Mechanical Test 37
3.1 Experimental test 37
3.1.1 Sample preparation 37
3.1.2 Compression test 40
3.2 FE simulation 41
3.2.1 Solid model 41
3.2.2 Finite element model 41
3.2.3 Material properties 43
3.2.4 Boundary conditions of the static analysis 44
3.2.5 Index and data analysis 45
3.3 Results of mechanical tests 47
3.3.1 Results of experimental tests using sawbone 47
3.3.2 Results of FE simulation without end cap 49
3.3.3 Results of FE simulation with end cap 53
3.3.4 Contact force in FE simulation 57

Chapter 4 Discussion 58
4.1 Discussion of animal study 59
4.2 Discussion of mechanical test 61
4.3 Discussion of FE simulation 64
4.4 Limitations 67
4.5 Future work 68

Chapter 5 Conclusion 69

References 70
Appendix 1 - The images of comprehensive histopathology scoring 76
A1.1 Criteria for Comprehensive histopathology scoring 76
A1.2 Polymorphonuclear cells 77
A1.3 Lymphocytes 79
A1.4 Plasma cells 81
A1.5 Macrophages 83
A1.6 Giant cells 85
A1.7 Necrosis 87
A1.8 Fibroplasia 89
A1.9 Fibrosis 91
A1.10 Fatty infiltrate 93
Appendix 2 – FE simulation of Sawbone model 96
A2.1 Finite element modeling 96
A2.2 Material properties 98
A2.3 Boundary conditions of the static analysis 98
A2.4 Incidence and data analysis 99
A2.5 Results of FE sawbone simulation 99

參考文獻 Bastijanic, J. M., J. Etscheidt, M. Sattiraju, C. Bonsignore, G. Kopchok, R. White and T. P. Sarac (2014). "Fatigue and in vivo validation of a peritoneum-lined self-expanding nitinol stent-graft." J Endovasc Ther 21(5): 735-746.

Bechtold, C., R. L. de Miranda, C. Chluba and E. Quandt (2016). "Fabrication of self-expandable NiTi thin film devices with micro-electrode array for bioelectric sensing, stimulation and ablation." Biomed Microdevices 18(6): 106.

Berger-Gorbet, M., B. Broxup, C. Rivard and L. H. Yahia (1996). "Biocompatibility testing of NiTi screws using immunohistochemistry on sections containing metallic implants." J Biomed Mater Res 32(2): 243-248.

Besinis, A., S. D. Hadi, H. R. Le, C. Tredwin and R. D. Handy (2017). "Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings." Nanotoxicology 11(3): 327-338.

Canavese, F., L. Marengo, A. Andreacchio, M. Mansour, M. Paonessa, M. Rousset, A. Samba and A. Dimeglio (2016). "Complications of elastic stable intramedullary nailing of femoral shaft fractures in children weighing fifty kilograms (one hundred and ten pounds) and more." Int Orthop 40(12): 2627-2634.

Castleman, L. S., S. M. Motzkin, F. P. Alicandri and V. L. Bonawit (1976). "Biocompatibility of nitinol alloy as an implant material." J Biomed Mater Res 10(5): 695-731.
Chen, Y., J. E. Frith, A. Dehghan-Manshadi, H. Attar, D. Kent, N. D. M. Soro, M. J. Bermingham and M. S. Dargusch (2017). "Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering." J Mech Behav Biomed Mater 75: 169-174.

Chen, Y. N., P. Y. Lee, C. H. Chang, C. W. Chang, Y. H. Ho, C. T. Li and Y. T. Peng (2016). "Computational comparison of tibial diaphyseal fractures fixed with various degrees of prebending of titanium elastic nails and with and without end caps." Injury 47(10): 2339-2346.

Chen, Y. N., P. Y. Lee, C. W. Chang, Y. H. Ho, Y. T. Peng, C. H. Chang and C. T. Li (2017). "Biomechanical investigation of titanium elastic nail prebending for treating diaphyseal long bone fractures." Australas Phys Eng Sci Med 40(1): 115-126.

Cutright, D. E., S. N. Bhaskar, B. Perez, R. M. Johnson and G. S. Cowan, Jr. (1973). "Tissue reaction to nitinol wire alloy." Oral Surg Oral Med Oral Pathol 35(4): 578-584.

Firoozbakhsh, K., M. S. Moneim, I. S. Yi, Y. Umeda, D. Theele and M. Shahinpoor (2004). "Smart intramedullary rod for correction of pediatric bone deformity: a preliminary study." Clin Orthop Relat Res(424): 194-201.

Fischer, H., M. Selig, J. Vagner, B. Vogel, E. Hempel, M. Kaiser, K. Brhel, A. Hinz, A. Felden, A. Schaf, L. Gumb, U. Ullrich, A. Grunhagen, U. Voges, H. Kuhnapfel, H. Cakmak, H. Maass, H. Becker, H. Breitwieser, R. Mikut, R. Oberle, W. Eppler, P. Schlossmacher, W. Pfleging, W. A. Kaiser, S. Schuler, R. Cichon, M. Cornelius, U. Kappert, M. O. Schurr, G. Buess and V. Falk (2000). "The medical engineering program of Forschungszentrum Karlsruhe." Minim Invasive Ther Allied Technol 9(3-4): 255-267.

Fouad, H. (2010). "Effects of the bone-plate material and the presence of a gap between the fractured bone and plate on the predicted stresses at the fractured bone." Med Eng Phys 32(7): 783-789.

Frigg, A., P. Rillmann, C. Ryf, R. Glaab and L. Reissner (2011). "Can complications of titanium elastic nailing with end cap for clavicular fractures be reduced?" Clin Orthop Relat Res 469(12): 3356-3363.

Ganesh, V. K., K. Ramakrishna and D. N. Ghista (2005). "Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates." Biomed Eng Online 4: 46.

Gil, F. J. and J. A. Planell (1998). "Shape memory alloys for medical applications." Proc Inst Mech Eng H 212(6): 473-488.

Gyaneshwar, T., R. Nitesh, T. Sagar, K. Pranav and N. Rustagi (2016). "Treatment of pediatric femoral shaft fractures by stainless steel and titanium elastic nail system: A randomized comparative trial." Chin J Traumatol 19(4): 213-216.

Heare, A., D. Goral, M. Belton, C. Beebe, A. Trizno and J. Stoneback (2017). "Intramedullary Implant Choice and Cost in the Treatment of Pediatric Diaphyseal Forearm Fractures." J Orthop Trauma 31(10): e334-e338.

Huber, R. I., H. W. Keller, P. M. Huber and K. E. Rehm (1996). "Flexible intramedullary nailing as fracture treatment in children." J Pediatr Orthop 16(5): 602-605.
Janas, A., K. Milewski, P. P. Buszman, P. Nowakowski, M. Jelonek, B. Orlik, A. Krauze, S. Samborski, D. Beaudry, G. Lecelrc, M. Krol, J. M. Lapointe, W. Wojakowski, A. Turek, R. S. Kiesz and P. E. Buszman (2015). "Safety and biocompatibility of a novel self-expanding nitinol carotid stent with hybrid cell design in a porcine model of neointimal hyperplasia." Kardiol Pol 73(4): 240-245.

Kaiser, M. M., L. M. Wessel, G. Zachert, C. Stratmann, R. Eggert, N. Gros, M. Schulze-Hessing, B. Kienast and M. Rapp (2011). "Biomechanical analysis of a synthetic femur spiral fracture model: Influence of different materials on the stiffness in flexible intramedullary nailing." Clin Biomech (Bristol, Avon) 26(6): 592-597.

Kaiser, M. M., G. Zachert, R. Wendlandt, R. Eggert, C. Stratmann, N. Gros, M. Schulze-Hessing and M. Rapp (2012). "Increasing stability by pre-bending the nails in elastic stable intramedullary nailing: a biomechanical analysis of a synthetic femoral spiral fracture model." J Bone Joint Surg Br 94(5): 713-718.

Kaiser, M. M., G. Zachert, R. Wendlandt, M. Rapp, R. Eggert, C. Stratmann, L. M. Wessel, A. P. Schulz and B. J. Kienast (2011). "Biomechanical analysis of a synthetic femoral spiral fracture model: Do end caps improve retrograde flexible intramedullary nail fixation?" J Orthop Surg Res 6: 46.

Kapanen, A., J. Ryhanen, A. Danilov and J. Tuukkanen (2001). "Effect of nickel-titanium shape memory metal alloy on bone formation." Biomaterials 22(18): 2475-2480.

Kujala, S., A. Pajala, M. Kallioinen, A. Pramila, J. Tuukkanen and J. Ryhanen (2004). "Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon." Biomaterials 25(2): 353-358.

Kujala, S., J. Ryhanen, T. Jamsa, A. Danilov, J. Saaranen, A. Pramila and J. Tuukkanen (2002). "Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail." Biomaterials 23(12): 2535-2543.

Lai, A., C. Christou, C. Bailey, C. J. Tan, J. Culvenor, T. Wang and W. R. Walsh (2017). "Biomechanical comparison of pin and nitinol bone staple fixation to pin and tension band wire fixation for the stabilization of canine olecranon osteotomies." Vet Comp Orthop Traumatol 30(5): 324-330.

Ligier, J. N., J. P. Metaizeau, J. Prevot and P. Lascombes (1985). "Elastic stable intramedullary pinning of long bone shaft fractures in children." Z Kinderchir 40(4): 209-212.

Ligier, J. N., J. P. Metaizeau, J. Prevot and P. Lascombes (1988). "Elastic stable intramedullary nailing of femoral shaft fractures in children." J Bone Joint Surg Br 70(1): 74-77.

Linhart, W. E. and A. Roposch (1999). "Elastic stable intramedullary nailing for unstable femoral fractures in children: preliminary results of a new method." J Trauma 47(2): 372-378.

Louropoulou, A., D. E. Slot and F. Van der Weijden (2015). "Influence of mechanical instruments on the biocompatibility of titanium dental implants surfaces: a systematic review." Clin Oral Implants Res 26(7): 841-850.

Luhmann, S. J., M. Schootman, P. L. Schoenecker, M. B. Dobbs and J. E. Gordon (2003). "Complications of titanium elastic nails for pediatric femoral shaft fractures." J Pediatr Orthop 23(4): 443-447.

Lukina, E., M. Kollerov, J. Meswania, D. Wertheim, P. Mason, P. Wagstaff, A. Laka, H. Noordeen, W. W. Yoon and G. Blunn (2015). "Analysis of retrieved growth guidance sliding LSZ-4D devices for early onset scoliosis and investigation of the use of nitinol rods for this system." Spine (Phila Pa 1976) 40(1): 17-24.

Mahar, A. T., S. S. Lee, F. D. Lalonde, T. Impelluso and P. O. Newton (2004). "Biomechanical comparison of stainless steel and titanium nails for fixation of simulated femoral fractures." J Pediatr Orthop 24(6): 638-641.

McKnight, R. R., S. K. Lee and R. G. Gaston (2018). "Biomechanical Properties of Nitinol Staples: Effects of Troughing, Effective Leg Length, and 2-Staple Constructs." J Hand Surg Am.

Mohamed, A. and A. S. Rajeev (2017). "Clinical outcomes and complications of titanium versus stainless steel elastic nail in management of paediatric femoral fractures-a systematic review." Eur J Orthop Surg Traumatol 27(2): 157-167.

Muller, C. W., R. Pfeifer, T. El-Kashef, C. Hurschler, D. Herzog, M. Oszwald, C. Haasper, C. Krettek and T. Gosling (2010). "Electromagnetic induction heating of an orthopaedic nickel--titanium shape memory device." J Orthop Res 28(12): 1671-1676.

Muller, C. W., R. Pfeifer, K. Meier, S. Decker, J. Reifenrath, T. Gosling, V. Wesling, C. Krettek, C. Hurschler and M. Kramer (2015). "A Novel Shape Memory Plate Osteosynthesis for Noninvasive Modulation of Fixation Stiffness in a Rabbit Tibia Osteotomy Model." Biomed Res Int 2015: 652940.

Nielsen, E., N. Bonsu, L. M. Andras and R. Y. Goldstein (2018). "The effect of canal fill on paediatric femur fractures treated with titanium elastic nails." J Child Orthop 12(1): 15-19.

Nuno, N., R. Groppetti and N. Senin (2006). "Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants." Clin Biomech (Bristol, Avon) 21(9): 956-962.

Ozdemir, Z., A. Ozdemir and G. B. Basim (2016). "Application of chemical mechanical polishing process on titanium based implants." Mater Sci Eng C Mater Biol Appl 68: 383-396.

Perez, A., A. Mahar, C. Negus, P. Newton and T. Impelluso (2008). "A computational evaluation of the effect of intramedullary nail material properties on the stabilization of simulated femoral shaft fractures." Med Eng Phys 30(6): 755-760.

Popkov, A., P. Foster, A. Gubin, D. Borzunov and D. Popkov (2017). "The use of flexible intramedullary nails in limb lengthening." Expert Rev Med Devices 14(9): 741-753.

Putters, J. L., D. M. Kaulesar Sukul, G. R. de Zeeuw, A. Bijma and P. A. Besselink (1992). "Comparative cell culture effects of shape memory metal (Nitinol), nickel and titanium: a biocompatibility estimation." Eur Surg Res 24(6): 378-382.

Ryhanen, J., M. Kallioinen, J. Tuukkanen, J. Junila, E. Niemela, P. Sandvik and W. Serlo (1998). "In vivo biocompatibility evaluation of nickel-titanium shape memory metal alloy: muscle and perineural tissue responses and encapsule membrane thickness." J Biomed Mater Res 41(3): 481-488.

Ryhanen, J., M. Kallioinen, J. Tuukkanen, P. Lehenkari, J. Junila, E. Niemela, P. Sandvik and W. Serlo (1999). "Bone modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation." Biomaterials 20(14): 1309-1317.

Sarkar, S., R. Bandyopadhyay and A. Mukherjee (2013). "Titanium elastic nail - Complications in the treatment of paediatric diaphyseal fracture of femur [corrected]." Open Orthop J 7: 12-17.

Schipper, O. N. and J. K. Ellington (2019). "Nitinol Compression Staples in Foot and Ankle Surgery." Orthop Clin North Am 50(3): 391-399.

Schipper, O. N., S. E. Ford, P. W. Moody, B. Van Doren and J. K. Ellington (2018). "Radiographic Results of Nitinol Compression Staples for Hindfoot and Midfoot Arthrodeses." Foot Ankle Int 39(2): 172-179.

Sevcikova, J. and M. Pavkova Goldbergova (2017). "Biocompatibility of NiTi alloys in the cell behaviour." Biometals 30(2): 163-169.

Shirazi-Adl, A., M. Dammak and G. Paiement (1993). "Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants." J Biomed Mater Res 27(2): 167-175.

Soderlund, C., S. Linder, P. E. Bergenzaun, T. Grape, H. O. Hakansson, A. Kilander, G. Lindell, M. Ljungman, B. Ohlin, J. Nielsen, C. Rudberg, P. O. Stotzer, E. Svartholm, E. Toth and F. Frozanpor (2014). "Nitinol versus steel partially covered self-expandable metal stent for malignant distal biliary obstruction: a randomized trial." Endoscopy 46(11): 941-948.

Takeshita, F., H. Takata, Y. Ayukawa and T. Suetsugu (1997). "Histomorphometric analysis of the response of rat tibiae to shape memory alloy (nitinol)." Biomaterials 18(1): 21-25.

Tarnita, D., D. N. Tarnita, N. Bizdoaca, I. Mindrila and M. Vasilescu (2009). "Properties and medical applications of shape memory alloys." Rom J Morphol Embryol 50(1): 15-21.
Tsuji, M., T. Ueda, K. Sawaki, M. Kawaguchi and K. Sakurai (2016). "Biocompatibility of a titanium dioxide-coating method for denture base acrylic resin." Gerodontology 33(4): 539-544.

Wall, E. J., V. Jain, V. Vora, C. T. Mehlman and A. H. Crawford (2008). "Complications of titanium and stainless steel elastic nail fixation of pediatric femoral fractures." J Bone Joint Surg Am 90(6): 1305-1313.

Wang, J., B. Zhou, X. S. Liu, A. J. Fields, A. Sanyal, X. Shi, M. Adams, T. M. Keaveny and X. E. Guo (2015). "Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone." Bone 72: 71-80.

Wang, X., S. Kustov and J. Van Humbeeck (2018). "A Short Review on the Microstructure, Transformation Behavior and Functional Properties of NiTi Shape Memory Alloys Fabricated by Selective Laser Melting." Materials (Basel) 11(9).

Windolf, M., M. F. Fischer, A. W. Popp, R. Matthys, K. Schwieger, B. Gueorguiev, J. B. Hunter and T. F. Slongo (2015). "End caps prevent nail migration in elastic stable intramedullary nailing in paediatric femoral fractures: a biomechanical study using synthetic and cadaveric bones." Bone Joint J 97-B(4): 558-563.

Yuan, B., M. Zhu and C. Y. Chung (2018). "Biomedical Porous Shape Memory Alloys for Hard-Tissue Replacement Materials." Materials (Basel) 11(9).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw