進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0807201514274400
論文名稱(中文) 基於絕熱轉換捷徑理論之絕緣層覆矽多模分(多)工器設計與模擬
論文名稱(英文) Design and Simulation of Mode (De)multiplexers on SOI using Shortcuts to Adiabaticity
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 潘梓瑄
研究生(英文) Tzu-Hsuan Pan
學號 L76024137
學位類別 碩士
語文別 英文
論文頁數 54頁
口試委員 指導教授-曾碩彥
口試委員-魏明達
口試委員-黃勝廣
口試委員-徐旭政
中文關鍵字 絕緣層覆矽  波導  多模分(多)工器 
英文關鍵字 silicon-on-insulator  waveguides  mode (de)multiplexer 
學科別分類
中文摘要 本論文致力於研究絕緣層覆矽(silicon-on-insulator, SOI)多模分(多)工器之理論分析與數值模擬。本論文之多模分(多)工器,是以非對稱方向耦合器(asymmetrical directional coupler, ADC)為基底,並結合量子系統中之絕熱轉換捷徑理論(shortcuts to adiabaticity, STA)設計而成。首先,我們會介紹耦合波導系統之基本理論,並比較弱耦合波導系統與近共振電磁場下之二能階系統的光學相似性,藉此將量子系統中之絕熱轉換捷徑協定應用到耦合波導系統中。由於絕熱轉換捷徑協定的引入,進而設計了波導間的耦合係數及不匹配參數,使得元件更加穩定。接下來,我們著重於利用絕緣層覆矽材料以具體實現多模分(多)工器之設計,絕緣層覆矽材料所具有的高折射率對比特性,因此多模分(多)工器的長度可望更為縮減。模擬結果與理論預測相符合,並證明了該設計確實具有良好的頻寬特性以及製程容忍度。
英文摘要 This thesis is devoted to the theoretical investigation and numerical simulations of mode (de)multiplexers based on silicon-on-insulator (SOI). The mode (de)multiplexers in this thesis are based on asymmetrical directional couplers (ADCs) and designed using shortcuts to adiabaticity (STA). First, we will introduce the theory of coupled-waveguide system and the quantum‐optical analogies between weakly-coupled waveguide structure and two-level system driven by near-resonant laser light. By means of the analogies, the STA protocol is introduced into coupled-waveguide system. In this way, the coupling coefficient and propagation constants mismatch can be engineered to optimize the device robustness. Then, we emphasize the applicability of the STA protocol to the SOI material system, the high index contrast of SOI also allows devices to be more compact. The simulation results agree with the theoretical predictions, and show that the mode (de)multiplexers using STA are broadband and have large fabrication tolerance.
論文目次 口試合格證明書
中文摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures vi

Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Introduction 1
1.3 Organization of the Thesis 2

Chapter 2 Theoretical Analysis 4
2.1 Theory of Coupled-Waveguide System 4
2.1.1 Wave Equation for Dielectric Waveguides 4
2.1.2 EigenMode Expansion (EME) Method 8
2.1.3 Analysis Method for Ridge Waveguide based on SOI 11
2.1.4 Coupled-Mode Theory 12
2.1.4.1 Codirectional Couplers 20
2.2 Analogies between Waveguide Optics and Quantum Theory 23
2.2.1 Two-Level System: Rabi Oscillations 23
2.2.2 Compare the Waveguide Optics with Quantum Theory 28
2.2.3 Shortcuts to Adiabaticity (STA) based on Invariant and Perturbation Theroy 29
2.2.3.1 Robustness against Coupling Coefficient Variations 31
2.2.3.2 Robustness against Wavelength Variations 33

Chapter 3 Simulation Results and Discussion 36
3.1 Schematic of the Ridge Waveguide used for Simulation 36
3.2 The Phase Matching Condition 37
3.3 The Relationships between the Coupling Coefficient and the Geometric Parameters 39
3.3.1 Coupling Coefficient 39
3.3.2 Waveguides Mismatch 42
3.4 Design and Simulation of Mode (De)multiplexers using STA 45
3.4.1 Bandwidth Analysis 47
3.4.2 Fabrication Tolerance Analysis 49
3.5 Discussion 50

Chapter 4 Conclusion 51

Reference 52
參考文獻 1. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR.” IEEE Photon. Technol. Lett. 21, 651–653 (2009).

2. S. Berdagué and P. Facq, “Mode division multiplexing in optical fibers,” Appl. Opt. 21, 1950–1955 (1982).

3. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a Compact Two-Mode Multi/Demultiplexer Consisting of Multimode Interference Waveguides and a Wavelength-Insensitive Phase Shifter for Mode-Division Multiplexing Transmission.” J. Lightwave Technol. 32, 2421–2426 (2012).

4. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38, 1854–1856 (2013).

5. J. Xing, Z. Li, X. Xiao, J. Yu, and Y. Yu, “Two-mode multiplexer and demultiplexer based on adiabatic couplers,” Opt. Lett. 38, 3468–3470 (2013).

6. M. Greenberg and M. Orenstein, “Multimode add-drop multiplexing by adiabatic linearly tapered coupling.” Opt. Express. 13, 9381–9387 (2005).

7. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38, 1422–1424 (2013).

8. D. Dai, J. Wang, and S. He, “Silicon multimode photonic integrated devices for on-chip mode-division multiplexed optical interconnects,” Prog. Electromagn. Res. 143, 773–819 (2013).

9. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, “Shortcuts to adiabaticity,” Adv. At., Mol., Opt. Phys. 62, 117–169 (2013).

10. S.-Y. Tseng, “Counterdiabatic mode-evolution based coupled-waveguide devices,” Opt. Express 21, 21224–21235 (2013).

11. S.-Y. Tseng, R.-D. Wen, Y.-F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22, 18849–18859 (2014)

12. S. Martínez-Garaot, S.-Y. Tseng, and J. G. Muga, “Compact and high conversion efficiency mode-sorting asymmetric Y junction using shortcuts to adiabaticity,” Opt. Lett. 39, 2306–2308 (2014).

13. X. Chen, H.-W. Wang, Y. Ban, and S.-Y. Tseng, “Short-length and robust polarization rotators in periodically poled lithium niobate via shortcuts to adiabaticity,” Opt. Express 22, 24169–24178 (2014).

14. K. Okamoto, “Fundamentals of Optical Waveguides,” 2nd ed., Academic Press, New York, 2006.

15. S.-Y. Tseng, “Development of linear and nonlinear components for integrated optical signal processing.” Ph.D. dissertation, University of Maryland, College Park, USA, 2006.

16. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons.” Proceed. SPIE. 4987, 69–82 (2003).

17. Q. Wang, G. Farrell, and T. Freir, “Effective index method for planar lightwave circuits containing directional couplers,” Opt. Commun. 259, 133–136 (2006).

18. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview.” J. Opt. Soc. Am. A 11, 963–983 (1994).

19. X. Chen, E. Torrontegui, and J. G. Muga, “Lewis-Riesenfeld invariants and transitionless quantum driving,” Phys. Rev. A 83, 062116 (2011).

20. H. R. Lewis and W. B. Riesenfeld, “An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field,” J. Math. Phys. 10, 1458–1473 (1969).

21. A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, “Optimally robust shortcuts to population inversion in two-level quantum systems,” New J. Phys. 14, 093040 (2012).

22. D. Daems, A. Ruschhaupt, D. Sugny, and S. Gu´erin, “Robust quantum control by a single-shot shaped pulse,” Phys. Rev. Lett. 111, 050404 (2013).

23. X.-J. Lu, X. Chen, A. Ruschhaupt, D. Alonso, S. Gu´erin, and J. G. Muga, “Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors,” Phys. Rev. A
88, 033406 (2013).

24. A. Yariv, “ Coupled-mode theory for guided wave optics,” IEEE J. Quant. Electron. 9, 919–933 (1973).

25. T. A. Ramadan, R. Scarmozzino, and R. M. Osgood, “Adiabatic couplers: design rules and optimization,” J.Lightwave Technol. 16, 277–283 (1998).

26. Y.-F. Chiu, “Design and Simulation of a Counterdiabatic Directional Coupler based on SOI,” Unpublished master dissertation, National Cheng Kung University, Tainan, Taiwan, 2014.

27. M. L. Cooper and S. Mookherjea, “Numerically-assisted coupled-mode theory for silicon waveguide couplers and arrayed waveguides,” Opt. Express 17, 1583–1599 (2009).

28. A. Ruschhaupt and J. G. Muga, “Shortcut to adiabaticity in two-level systems: control and optimization,” J. Mod. Opt. 61, 828–832 (2014).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw