進階搜尋


 
系統識別號 U0026-0807201415292400
論文名稱(中文) 5MW風力發電機複合材料葉片於極限風場負載下之積層配置對結構強度影響與最佳化設計
論文名稱(英文) Effects of Composite Layup on Structural Strength under Extreme Wind Load and Optimal Design for Composite Material Blade of a 5MW Wind Turbine
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 蔡政晟
研究生(英文) Cheng-Cheng Tsai
學號 N16014051
學位類別 碩士
語文別 中文
論文頁數 127頁
口試委員 指導教授-林仁輝
口試委員-郭真祥
口試委員-苗君易
口試委員-黃運琳
中文關鍵字 風力發電機葉片  複合材料  三明治結構  極限風場狀況  田口方法 
英文關鍵字 Wind turbine blade  Composite material  Sandwich structure  Extreme wind condition  Taguchi method. 
學科別分類
中文摘要 本研究主要探討葉片積層厚度對葉片整體重量(Weight)、葉尖位移量(Tip displacement)與破壞準則(Failure criteria)的影響。葉片之幾何外形尺寸採用NREL 5MW原報告中之幾何尺寸,並利用NREL WT-Perf軟體計算出該風機葉片於靜止極限風場下所受到之氣動力負載(Aerodynamic loads),施加於葉片上17個翼截面上,並採用ANSYS有限元素軟體進行模擬。
由於原NREL 5MW之報告中並未揭露其所採用之積層配置,故本文將葉片翼截面分成表面複材厚度(Skin thickness)、表面芯材厚度(Skin core thickness)、翼樑緣厚度(Sparcap thickness)、翼樑複材厚度(Web thickness)與翼樑芯材厚度(Web core thickness),並針對各部位之厚度進行單因子分析,發現各部位積層厚度增加對葉片重量之變化主要受到材料密度與覆蓋面積大小影響,葉片位移量之大小則皆維持在國際規範的最大允許值之內,而表面芯材厚度與翼樑芯材厚度的增加則在一定範圍內都能有相當顯著的改善破壞準則。
而後再利用田口方法,將各部位厚度作為因子,並由前述之單因子比較中選出較為適當的厚度作為水準值,利用L27直交表進行參數水準之配置,利用ANSYS進行模擬後,針對破壞準則進行望小型品質特性之分析,所得之最佳參數組合較原直交表中之組合為佳,顯示利用田口方法可獲得較好的參數組合,最後再將此參數組合於靜止極限風場之負載下進行挫曲之分析,可得該葉片之挫曲負載因子(Buckling load factor),其值大於IEC-61400規範中之規定,亦發現該葉片結構不穩定發生之位置於葉片下表面處,主要係因為葉片受負載而彎曲時,葉片下表面主要承受壓縮應力所致。

關鍵字:風力發電機葉片、複合材料、三明治結構、極限風場狀況、田口方法
英文摘要 Effects of Composite Layup on Structural Strength under Extreme Wind Load and Optimal Design for Composite Material Blade of a 5MW Wind Turbine

Cheng-Cheng Tsai
Jen-Fin Lin
Department of Mechanical Engineering, College of Industry

SUMMARY
The structural optimal design of a 61.3 meter long blade in NREL 5MW wind turbine was developed in this thesis for use under extreme wind condition. The blade model was created by Solid Works and simulated in ANSYS using finite element methods. The static extreme wind condition based on IEC-61400 regulation was used for calculating the aerodynamic loads by Blade Element Momentum(BEM) theory in NREL WT-Perf software.

In this thesis, single factor analysis, Taguchi method and buckling analysis were used for finding out the effect of layup thickness to the blade structure and optimal layup design. The numerical results will be confirmed to have acceptable performance with regard to weight, tip displacement, maximum strain failure criterion and Tsai-Wu failure criterion, all of above except weight should as well meet the requirements introduced from international regulation such as DNV-OS-J101 from Det Norske Verita(DNV) organization and IEC-61400 from International Standard organization.

Key words: Wind turbine blade, Composite material, Sandwich structure, Extreme wind condition, Taguchi method.

INTRODUCTION
The blades in a wind turbine are key components for capturing wind power, they are very expensive and would affect the safety and efficiency of the wind turbine. According to statistical data from Caithness Windfarm Information Forum[3] Caithness Wind farm Information Forum, Summary of wind turbine accident data to 30 June 2013. Available from: 〈http://www.caithnesswindfarms.co.uk〉.[3], fierce wind cause the most blade failure cases, which would lead to blade damages or blade hittingthe tower due to large tip displacement. Therefore, we would like to discuss the effect of layup thickness to blade weight, tip displacement and failure criteria, and confirm whether the layup design conform to requirements of international regulations or not.
In this thesis, a NREL 5MW wind turbine blade[21] was used as a numerical analysis model. This wind turbine was establish by National Renewable Energy Laboratory(NREL) and has taken DOWEC, WindPACT and REpower 6MW wind turbines into consideration. Total weight, blade specification, airfoil, pitch angle distribution and wind turbine specification were revealed in their report. Other related literatures includes: Bazilevset. al.[36] had used finite element method for blade pre-bending analysis, the result showed that multilayer composite material blade was suitable to establish by thin-shell model. Young and Wu[47] had a 3.5 meters blade subjected to ANSYS simulation and pointed out that blade element momentum theory has good efficiency and accuracy on calculating aerodynamic loads.

BASIC THEORIES
The composite material used in this thesis is EGlass/Epoxy laminate layer composed of EGlassfiber and Epoxy matrix, which is an orthotropic material and has different young’s and shear modulus and Poisson’s ratios in each principal coordinate direction. Sandwich structures, combined EGlass/Epoxy laminates with isotropic foam core, can provide better anti-bending and anti-buckling ability.
Maximum strain criterion and Tsai-Wu criterion[56] are used in this thesis. Maximum strain criterion is calculated in terms of strain while Tsai-Wu criterion in terms of stress. Both criteria can be used in orthotropic materials while Tsai-Wu criterion has taken interactions in each principal coordinate stresses into consideration. Tip displacement was regulated in DNV[25] international regulation. The blade tip displacement should meet the requirement of certain percentage of blade-tip-to-tower clearance as blade is not deformed. With regard to NREL 5MW wind turbine specifications, the maximum tip displacement would be 8.572 m in static condition and 6.316 m in operating condition.
A Taguchi method[59] and L27 orthogonal array of 5 parameter and 3 levels would be used to find out the contribution of each layup thickness to blade structural strength after single factor analysis. The smaller-the-better quality characteristic was analyzed according to maximum strain criterion and Tsai-Wu failure criterion.


NUMERICAL SETTINGS
The NREL 5MW composite blade would be subjected to finite element method using ANSYS software, including 65,635 element and 60,109 nodes after mesh generation. The main materials used in this thesis are EGlass/Epoxy laminates and foam core, combining the above two materials would create so-called sandwich structure.
The NREL 5MW blade was separated to 17 sections along the blade span and each section composed of 5 parts with different thickness, which are skin thickness, skin core thickness, sparcap thickness, web thickness and web core thickness. All the principal coordinate direction 1 of the composite material would point from the blade root to blade tip. The static extreme wind condition, wind velocity 70m/s and rotor speed 0 rpm based on IEC-61400 regulation, is used as aerodynamic loads, which are evaluated by NREL WT-Perf software, would applied at the 17 sections on the blade as boundary conditions and blade root be set as fixed support for representing the phenomena of connection with the hub.

RESULTS AND DISCUSSION
The baseline layup thickness can be decide by the result of simulations with regard to weight, tip displacement, and failure criteria. To meet the requirements of international regulation regard to tip displacement and safety factors and weight be less NREL report, the proper baseline layup thickness would be 5mm for each part.
Increasing skin thickness, sparcap thickness and web thickness would increase blade weight due to greater cover area and larger density of composite material than foam core. Failure criteria can be lower down by increasing skin core thickness, sparcap thickness and web core thickness, but the decreasing slope would slow down as skin core thickness and web core thickness greater than 25 mm and sparcap thickness greater than 5 mm.
The failure criteria of optimal parameter sets obtained from Taguchi method are smaller than corresponding values in the L27 orthogonal array, which means that Taguchi method can be used for optimal design in a given parameters and level range.

CONCLUSION
From the result of single factor analysis, failure criteria could be decreased by increasing skin core thickness, sparcap thickness and web core thickness. And Taguchi method results showed that the skin thickness and web thickness are the least significant to failure criteria decrease, but increasing the above two thickness could help reducing the tip displacement.
From the result of buckling analysis, the structural unstable location happens at sparcap location, 13.5 meters from blade root, down side of the blade, and minimum load factor of the blade can be increased by increasing sparcap thickness.
論文目次 摘要 I
EXTENDED ABSTRACT III
致謝 VII
目錄 X
圖目錄 XIV
表目錄 XVIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 文獻回顧 4
第二章 複合材料基本力學理論 11
2.1 葉片複合材料及力學模型簡介 11
2.1.1 複合材料 11
2.1.2 疊層板應力應變關係 12
2.1.2.1 廣義虎克定律 12
2.1.2.2 應力應變關係之對稱性 15
2.1.2.3 側向等向性材料 19
2.1.2.4 側向等向性材料與工程常數 20
2.1.3 三明治結構(Sandwich structure) 23
2.2 基本力學理論 24
2.2.1 葉片元素動量理論 (Blade Element Momentum Theory) 24
2.2.2 破壞準則 28
2.2.2.1 最大應變準則 28
2.2.2.2 Tsai-Wu破壞準則 29
2.2.3 葉尖位移量規範 33
2.2.4 田口方法 35
第三章 數值分析 47
3.1 模擬軟體 47
3.1.1 NREL WT-Perf軟體 47
3.1.2 ANSYS 模組簡介與說明 48
3.1.2.1 ANSYS Composite PrepPost 48
3.1.2.2 ANSYS Static Structural Model 49
3.1.2.3 ANSYS Linear Buckling 50
3.1.3 Minitab統計分析軟體簡介 51
3.2 數值參數設定 52
3.2.1 風機基本資料與葉片幾何外型 52
3.2.2 網格設定 54
3.2.3 葉片材料介紹與機械性質 55
3.2.4 積層生成設定 56
3.2.5 邊界條件設定 57
第四章 結果與討論 78
4.1 葉片積層設計基準值 78
4.2 表面三明治結構之玻璃纖維複合材料厚度對葉片之影響 79
4.3 表面三明治結構之芯材厚度對葉片之影響 81
4.4 翼樑緣厚度對葉片之影響 82
4.5 翼樑三明治結構之玻璃纖維複合材料厚度對葉片之影響 83
4.6 翼樑三明治結構之芯材材厚度對葉片之影響 84
4.7 田口品質方法 86
4.8 線性挫曲分析 89
第五章 結論與未來展望 114
5.1 結論 114
5.2 未來展望 115
參考文獻 117
自述 127
參考文獻 [1] H.F. Zhou et al., A review of full-scale structural testing of wind turbine blades, Renewable and Sustainable Energy Reviews, Issue 33, pp. 177–187, 2014.
[2] The World Wind Energy Association, World wind energy report, Available from : 〈www.wwindea.org〉, 2012.
[3] Caithness Wind farm Information Forum, Summary of wind turbine accident data to 30 June 2013. Available from: 〈http://www.caithnesswindfarms.co.uk〉.
[4] T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi. Wind energy handbook. New York: John Wiley & Sons, 2001.
[5] PROTEST (PROcedures for TESTing and measuring wind energy systems). Deliverable D1: State-of-the-Art-Report. FP7- ENERGY- 2007- 1-RTD, 2009.
[6] Guodian United Power. 〈http://www.gdupc.com.cn/〉.
[7] J. Wilkes, J. Moccia, A. Arapogianni, M. Dragan, N. Plytas, A.B. Genachte, et al. The European offshore wind industry key 2011 trends and statistics. European wind energy association (EWEA), 2012. Available from: 〈http://www.ewea.org〉.
[8] W.A. Timmer and R.P.J.O.M. van Rooij, Summary of the delft university wind turbine dedicated airfoils, Journal of Solar Energy Engineering, Volume 125, Issue 4, pp. 488-496, 2003.
[9] R.M. Mayer, Design of composite structures against fatigue applications to wind turbin blades, Chippenham: Antony Rowe Ltd, pp. 195–208, 1996.
[10] D.L.E. Gourieres, Wind power plants theory and design, New York: Pergamon Press, 1982.
[11] C. Kong, H. Kim, J. Kim, A study on structural and aerodynamic design of composite blade for large scale HAWT system: Final report, Hankuk Fiber Ltd, 2000.
[12] D.J. Malcolm and A.C. Hansen, WindPACT Turbine Rotor Design Study, Subcontract Report NREL/SR-500-32495, Revised April 2006, National Renewable Energy Laboratory, Golden, Colorado, USA, 2006.
[13] G. Bir and P. Migliore, Preliminary Structural Design of Composite Blades for Two- and Three-Blade Rotors, Technical Report NREL/ TP- 500-31486, September 2004, National Renewable Energy Laboratory, Golden, Colorado, USA, 2004.
[14] D.A. Griffin, WindPACT Turbine Design Scaling Studies Technical Area 1 -Composite Blades for 80- to 120-Meter Rotor, Subcontract Report NREL/SR -500-29492, April 2001, National Renewable Energy Laboratory, Golden, Colorado, USA, 2001.
[15] W.A. Timmer and R.P.J.O.M. van Rooij, Summary of the delft university wind turbine dedicated airfoils, Journal of Solar Energy Engineering, Volume 125, Issue 4, pp. 488-496, 2003.
[16] F. Bertagnolio, N. Srensen, J. Johansen and Peter Fuglsang, Wind Turbine Airfoil Catalogue, Riso National Laboratory Riso-R-1280(EN), Roskilde, Denmark, 2001.
[17] H.J.T. Kooijman, C. Lindenburg, D. Winkelaar, E.L. van der Hooft, DOWEC 6 MW PRE-DESIGN, Aero-elastic modelling of the DOWEC 6 MW pre-design in PHATAS, DOWEC-F1W2-HJK-01-046/9, ECN, 2003.
[18] C. Lindenburg, Aeroelastic Modelling of theLMH64-5 Blade, DOWEC- 02-KL-083/0, ECN, 2002.
[19] H.J.T. Kooijmanm et al.:DOWEC 6 MW pre-design, ECN- CX- 01- 135, ECN, 2002.
[20] R Nijsse, WMC5MW laminate lay-out of reference blade for WP 3, UPWIND 019945 (SES6), 2007.
[21] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, Definition of a 5-MW Reference Wind Turbine for Offshore System Development, NREL/ TP-500-38060, NREL, 2009.
[22] D.T. Griffith and T.D. Ashwill, “The Sandia 100-meter All-glass Baseline Wind Turbine Blade: SNL100-00,” Sandia National Laboratories Technical Report, SAND2011-3779, 2011.
[23] D.T. Griffith, B.R. Resor, T.D. Ashwill, “Challenges and Opportunities in Large Offshore Rotor Development: Sandia 100-meter Blade Research, ” AWEA Wind power 2012 Conference and Exhibition, Scientific Track Paper, Atlanta, GA, USA, 2012.
[24] T. Ackermann and L. So¨der, Wind energy technology and current status. Renew Sustain Energy Rev, Volume 4, pp. 315–74, 2000.
[25] DNV, "Design of offshore wind turbine structures", Offshore Standard DNV-OS-J101, 2010.
[26] International Standard, "IEC 61400-1", Reference number IEC 61400- 1:2005, 2005.
[27] M. Leong, L.C.T. Overgaard, I.M. Daniel, E. Lund and O.T. Thomsen," Interlaminar/interfiber failure of unidirectional glass fiber reinforced composites used for wind turbine blades", Journal of Composite Materials Issue 47, Volume 3, pp. 353–368, 2012.
[28] S.G. Taylor, G. Park, K.M. Farinholt and M.D. Todd, "Fatigue crack detection performance comparison in a composite wind turbine rotor blade", Structural Health Monitoring, Issue 12, Volume 3, pp. 252–262, 2013.
[29] 蘇煒年、楓祥儀、鄭景木、黃金城、林輝政與黃心豪,「150kW風力發電機葉片有限元素模型分析與驗證」,台灣風能學術研討會,2013
[30] C. Kong, J. Bang, Y. Sugiyama, Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy Volume 30, Issue 11– 12, pp. 2101–2114, 2005.
[31] B.F. Sørensen, E.R. Jørgensen, C.P. Debel, F.M. Jensen, H.M. Jensen, T.K. Jacobsen, et al, Improved design of large wind turbine blade of fiber composites based on studies of scale effects (Phase1) – summary report, Roskilde : RisøNational Laboratory. Reportno: Risø-R-1390 (EN), 2004.
[32] M.O.L. Hansen, J.N. Sorensen, S. Voutsinas, N. Sorensen, H.A. Madsen. State of the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences, pp. 285–330, 2006.
[33] W. Yu, L. Liao, D.H. Hodges, V.V. Volovoi, Theory of initially twisted, composite, thin-walled beams. Thin-Walled Structures, Issue 43, pp. 1296–311, 2005.
[34] L. Zhou, S.H Xing, Y. Li, "Dynamic Analysis For Wind Turbine Composite Blade", Applied Mechanics and Materials, Vol. 364, pp. 102-106, 2013.
[35] K. Cox and A. Echtermeyer, "Effects of composite fiber orientation on wind turbine blade buckling resistance", Wind Energy, DOI: 10.1002 /we.1681, 2013.
[36] Y. Bazilevs, M.C. Hsu, J. Kiendl and D.J. Benson, "A computational procedure for prebending of wind turbine blades", International Journals for Numerical Methods in Engineering, Vol. 89, pp. 323 –336, 2012.
[37] C.P. Chen and T.Y. Kam, "Failure Analysis of Small Composite Sandwich Turbine Blade Subjected to Extreme Wind Load", Procedia Engineering, Vol. 14, pp. 1973–1981, 2011.
[38] C. Kong, S. Choi and H. Park, "Investigation on Design for a 500 W Wind Turbine Composite Blade Considering Impact Damage", Advanced Composite Materials, Vol. 20, pp. 105–123, 2011.
[39] D. Cárdenas, A.A. Escárpita, H. Elizalde, J.J. Aguirre, H. Ahuett, P. Marzocca and O. Probst," Numerical validation of a finite element thin-walled beam model of a composite wind turbine blade", Wind Energy, Vol. 15, pp. 203–223, 2012.
[40] E.R. Jorgensen, K.K. Borum, M. McGugan, C.L. Thomsen, F.M. Jensen, C.P. Debel., Full scale testing of wind turbine blade to failure - flap-wise loading, Riso-R-1392(EN) ISBN 87-550-3184-6; ISBN 87- 550- 3185-4 (Internet) ISSN 0105-2840.
[41] F.M. Jensen, Compression strength of a fibre composite main spar in a wind turbine. Riso-R-1391(EN) ISBN 87-550-3184-6; ISBN 87-550-3185-4 (Internet) ISSN 0105-2840.
[42] H.F. Zhou et al., A review of full-scale structural testing of wind turbine blades, Renewable and Sustainable Energy Reviews, Issue 33, pp. 177–187, 2014.
[43] F.M. Jensen, B.G. Falzon, J. Ankerson, H. Stang, Structural testing and numerical simulation of a 34 m composite wind turbine blade, Composite Structures , Volume 76, Issues 1–2, pp. 52–61, 2006.
[44] E.R. Jorgensen, K.K. Borum, M. McGugan, C.L. Thomsen, F.M. Jensen, C.P. Debel, Full scale testing of wind turbine blade to failure – flapwise loading. Riso-R-1392(EN) ISBN 87-550-3184-6; ISBN 87-550-3185-4 (Internet) ISSN 0105-2840.
[45] L.R. McKittrick, D.S. Cairns, J. Mandell, D.C. Combs, D.A. Rabern, and R.D.V. Luchene. Analysis of a composite blade design for the aoc 15/50 wind turbine using a finite element model. Sandia National Laboratories, 2001.
[46] K. Cox et al., Structural design and analysis of a 10MW wind turbine blade, Energy Procedia, Vol. 24, pp. 194-201, 2014.
[47] W.B. Young and W.H. Wu, "Optimization of the Skin Thickness Distribution in the Composite Wind Turbine Blade", Department of Aeronautics and Astronautics National Cheng Kung University, 2011.
[48] W.F. Hu, D.Y. Park and D.H. Choi, "Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight", Engineering Optimization, Vol. 45, No. 12, pp. 1469–1487, 2013.
[49] 邱榮權、陳坤男、劉尚奇、陳品揚,風力機葉片結構多目標最佳化設計,2010臺灣風能學術研討會,2010
[50] I.S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill Inc., New York, 1956.
[51] R.M. Jones, Mechanics of Composite Materials Second Editionm Taylor and Francis Inc., Philadelphia, PA, 1999.
[52] A. Petras, Design of Sandwich Structures, Cambridge University Engineering Department, 1998.
[53] T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, John Wiley & Sons Ltd, 2001.
[54] C.N.H. Lock, Experiments to verify the independence of the elements of an airscrew blade, ARCR R&M No. 953, 1924.
[55] L.P. Kollár and G.S. Springer, Mechanics of Composite Structures, Cambridge University Press, 2003.
[56] S.W. Tsai and E.M. Wu, A general theory of strength for anisotropic materials. Journal of Composite Materials, Vol. 5, pp. 58–80, 1971.
[57] E.M. Wu, “Optimal Experimental Measurements of Anisotropic Failure Tensors,” J. Composite Materials, Vol. 6, pp. 472-489, 1972.
[58] ANSYS ACP Help Failure Analysis.
[59] Genichi Taguchi, Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream, ASME Press, ISBN 978-0791800287, 1992
[60] 范漢欽、黃士佳、蔡宗賢,田口軟體應用,義守大學工業工程與管理學系,2002
[61] R.F. Gibson, Principles of Composite Material Mechanics, Third Edition, CRC Press, 2011.
[62] R.M. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York, 1979.
[63] Minitab 17 User manual.
[64] A.D Platt and M.L. Buhl, WT_Perf User Guide for Version 3.05.00, NREL Technical Report, NREL/TP-XXXXX, 2012.
[65] Y. Bazilevs1, M.C. Hsu, J. Kiendl, R. Wüchner and K.U. Bletzinger, “3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids; 2010. 10.1002/fld.2400.
[66] ANSYS, ANSYS Composite PrepPost Training, ANSYS Inc., 2012.
[67] DIAB Group, Divinycell H Technical Data, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw