進階搜尋


 
系統識別號 U0026-0807201413535200
論文名稱(中文) 加權卜瓦松分佈下計數型資料製程能力指標之研究
論文名稱(英文) Developing Process Capability Index for Attribute Data under Weighted Poisson Distribution
校院名稱 成功大學
系所名稱(中) 統計學系
系所名稱(英) Department of Statistics
學年度 102
學期 2
出版年 103
研究生(中文) 蔡琬慈
研究生(英文) Wan-Tzu Tsai
學號 r26014064
學位類別 碩士
語文別 中文
論文頁數 36頁
口試委員 指導教授-潘浙楠
口試委員-鄭春生
口試委員-溫敏杰
中文關鍵字 製程能力分析  製程能力指標  瑕疵嚴重程度  卜瓦松分配  計數型資料 
英文關鍵字 Process capability analysis (PCA)  Process capability indices (PCIs)  Defect severity  Poisson distribution  Attribute data 
學科別分類
中文摘要 一般製造業的品質管理常以管制圖及製程能力分析監控產品及製程的品質,並藉由製程能力指標判斷此製程是否達到產品規格要求的標準。
由於關鍵品質特性大多以計量值(variable data)方式呈現,因此多數學者均致力於計量型製程能力指標之研究。但實務上,仍有不少製程檢驗係以Go/No-Go之方式進行,例如燈罩是否有裂痕、紙張有無汙點等,均屬計數型資料(attribute data)型態,目前已有部分學者如Borges et al.(2001)、Perakis 與Xekalaki(2002)及Hsieh與Tong(2006)等針對此類型之資料制定製程能力指標。但彼等所提出之指標均未考量瑕疵嚴重程度不同其權重應有所區別。因此,本研究係探討考量瑕疵嚴重程度不同時計數型製程能力指標之制定與評估,我們首先針對Perakis與Xekalaki(2002)提出的C_pcu指標進行修正,並據此制定出新的製程能力指標C_D。
接著,以模擬的方式評估比較當瑕疵嚴重程度不同時新指標C_D與Borges et al. (2001)提出的C指標及Perakis 與Xekalaki(2002)的C_pcu指標是否能準確反映製程良率的變化。結果發現無論在參數的敏感度分析或權重改變對於指標的影響分析中,我們所提之新指標C_D均較能穩健地反映良率的變化。此外,我們亦建置製程良率與新指標之對照表,藉此呈現C_D指標隨良率之不同而產生改變之狀況。
最後,我們以長春化工絕緣紙汙點之嚴重程度為例,說明新製程能力指標C_D可正確地反映計數型製程實際改善的成效,研究結果可作為工廠品管單位在評估製程良率表現時之參考。
英文摘要 Statistical control charts and process capability analysis are commonly used to monitor the quality of products through processes in manufacturing industries. Due to the fact that the data for most quality characteristics are collected in variable type, many process capability indices for variable data have been developed in the past decades. However, there are quite a processes in which the data are collected in Go/No-Go or attribute type. For example, the cracks appear on lampshade or the black spots on the insulation paper.
Borges et al.(2001), Perakis and Xekalaki(2002) and other researchers have proposed PCIs for attribute data, such as C and C_pcu indices etc. But, these indices do not take the information of defect severity into account. Therefore, it is necessary to develop a new process capability index for attribute data by taking the consideration of defect severity. Modifying Perakis and Xekalaki(2002)’s C_pcu index, we propose a new process capability index C_D in this research. Then, the simulation method is used to compare the performance of three indices C_D,C and C_(pcu )in terms of properly reflecting the yield change. The simulation results show that our proposed index C_D outperforms C and C_pcu indices during the sensitivity and impact analysis for parameter changes under different weight combinations. We further construct a comparison table to show the process yield changes when the new capability index C_D varies.
Finally, a realistic example of quality improvement for the insulation papers manufactured in Taiwan Chang Chung Company is used to demonstrate that the new process capability index C_D can properly reflect the improvement results. Hopefully, the new index and its practical application can provide a useful reference for quality practitioners in evaluating the process quality for attribute data occurred in industries.
論文目次 第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究架構 2
第二章 文獻回顧與探討 4
2.1計量型資料之製程能力指標 4
2.2計數型資料之製程能力指標 5
2.3其他相關文獻 6
第三章 加權卜瓦松分佈下計數型資料製程能力指標 8
3.1加權卜瓦松分佈下計數型資料製程能力指標之制定 8
3.2加權卜瓦松分佈下計數型資料製程能力指標之模擬分析 11
3.2.1比較在計數型資料下且考慮瑕疵嚴重程度不同時製程能力指標之表現 11
3.2.2計數型指標在瑕疵分數管制系統下之敏感度比較 15
3.2.3不同權重比例對計數型指標之影響 21
第四章 數值實例分析 26
第五章 結論與未來研究方向 28
5.1結論 28
5.2未來研究方向 29
參考文獻 30
附錄A 33
參考文獻 1.Bohman, H., “Approximate fourier analysis of distribution functions.” Arkiv för matematik, Vol.4, No.2, pp.99-157. (1961)
2.Borges, W. S. and Ho, L. L., “A fraction defective based capability index.” Quality and Reliability Engineering International, Vol.17, No.6, pp.447-458. (2001)
3.Chan, L. K., Cheng, S. W. and Spiring, F. A., “A new measure of process capability: cpm.”, Journal of QualityTechnology, Vol. 20, No. 3, pp.162-175. (1988)
4.Chimka, J. R. and Cabrera Arispe, P. V., “New demerit control limits for poisson distributed defects.” Quality Engineering, Vol.18, No.4, pp.461-467. (2006)
5.Dodge, H. F., “A method of rating manufactured product.” Bell System Technical Journal, Vol.7, No.2, pp.350-368. (1928)
6.Davies, R. B., “Numerical inversion of a characteristic function.” Biometrika, Vol.60, No.2, pp.415-417. (1973)
7.Fay, M. P. and Feuer, E. J., “Confidence intervals for directly standardized rates: a method based on the gamma distribution.” Statistics in Medicine. Vol.16, No.7, pp.791-801. (1997)
8.Hoadley, B., “The quality measurement plan (QMP).”Bell System Technical Journal, Vol.18, No.2, pp.218-273. (1981)
9.Hsieh, K. L. and Tong, L. I., “Incorporating process capability index and quality loss function into analyzing the process capability for qualitative data.” The International Journal of Advanced Manufacturing Technology, Vol.27, No.11-12, pp.1217-1222. (2006)
10.Juran, J. M., Quality Control Handbook, McGraw-Hill, New York. (1974)
11.Jones, L. A., Woodall, W. H. and Conerly, M. D., “Exact properties of demerit control charts.” Journal of Quality Technology, Vol.31, No.2, pp.207-216. (1999)
12.Kane, V. E., “Process capability indices.” Journal of Quality Technology. Vol.18, No.1, pp.41-52. (1986)
13.Kotz, S. and Lovelace, C. R., Process capability indices in theory and practice, Arnold, London. (1998).
14.Kotz, S. and Johnson, N. L., Process capability indices, Chapman and Hall, New York. (1993)
15.Kotz, S. and Johnson, N. L., “Process capability indices – a review, 1992–2000.” Journal of Quality Technology, Vol.34, No.1, pp.2–19. (2002)
16.Krishnamoorthi, K. S., “Capability indices for processes subject to unilateral and positional tolerances.” Quality Engineering .Vol.2, No.4, pp.461-471. (1990)
17.Montgomery, D. C., Introduction to Statistical Quality Control, John Wiley & Sons, New York. (1996)
18.Pearn, W. L., Lin, G. H., and Chen, K. S., “Distributional and inferential properties of process capability indices.”, Journal of QualityTechnology, Vol.24, No.4, pp.216-231. (1992)
19.Perakis, M., and Xekalaki, E., “A process capability index that is based on the proportion of conformance.” Journal of Statistical Computation and Simulation, Vol. 72, No.9, pp.707-718. (2002)
20.Perakis, M. and Xekalaki, E., “A process capability index for discrete processes.” Journal of Statistical Computation and Simulation, Vol. 75, No. 3, pp.175–187. (2005)
21.Shephard, N. G., “From characteristic function to distribution function: a simple framework for the theory.” Econometric theory, Vol.7, No.4, pp.519-529. (1991)
22.Spiring, F., Leung, B., Cheng, S. and Yeung, A., “A bibliography of process capability papers.” Quality and Reliability Engineering International, Vol.19, No.5, pp.445-460. (2003)
23.Waller, L. A., Turnbull, B. W. and Hardin, J. M., "Obtaining distribution functions by numerical inversion of characteristic functions with applications." The American Statistician , Vol.49, No.4, pp.346-350. (1995)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-07-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-07-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw