系統識別號 U0026-0807201010414300
論文名稱(中文) 大白鼠後肢運動功能評估系統之設計
論文名稱(英文) Design of Measurement Systems to Evaluate Hindlimbs Motor Function of Rats
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生(中文) 張明溫
研究生(英文) Ming-Wen Chang
電子信箱 c2157101@mail.stut.edu.tw
學號 N2890143
學位類別 博士
語文別 英文
論文頁數 55頁
口試委員 口試委員-黃廣志
中文關鍵字 傾斜板  腦部受撞  壓力板  脊椎受損  運動功能 
英文關鍵字 Inclined Plane  Traumatic Brain Injury(TBI)  Force Plate  Spinal Cord Injury (SCI)  Motor function 
中文摘要 本研究是提出兩種實驗用大白鼠後肢運動功能的評估系統,第一種適用於腦部受撞(Traumatic Brain Injury; TBI)模式的傾斜板系統(Inclined Plane System),主要是量測大白鼠肢體的抓力,在傾斜板上方有一特殊的區域,可讓大白鼠的肢體去抓住以防止滑下,當傾斜板傾斜的角度愈大,大白鼠沒有滑下,表示其抓力較大,亦即肢体功能愈正常。因此,從傾斜板傾斜角度的大小即可評估肢體運動功能在TBI後復原情況。此系統設計是以微控器為核心所建立,配合步進馬達帶動滾珠螺桿以改變傾斜板的傾斜角度,共有7種傾斜速度可供使用者選擇,另有2組紅外線遮斷感測器偵測大白鼠離開抓取的地面及滑下的瞬間,以使系統自動停止傾斜並在LCD上或個人電腦顯示目前的傾斜角度,此系統可單獨使用或者與個人電腦連線使用,目前已在奇美醫學研究中心使用在TBI相關的實驗。第二種適用於脊椎受損(Spinal Cord Injury;SCI)模式的壓力板系統(Force Plate System),此系統以應變計(Strain Gauge)做成5個壓力板配合微控制器、信號放大器及A/D轉換器所設計而成,用來量測大白鼠各肢體及臀部施加在壓力板上的重量,當大白鼠的後肢運動功能較差時,就沒辦法支撐身體的重量,故臀部不能被支撐到正常的高度,所以在臀部壓力板上的重量會增加,反之後肢運動功能較正常時,臀部壓力板上的重量會減少,因此,可以用臀部重量除以全身重量得到臀部重量百分比(W%HQ),以此來評估後肢運動功能的好壞。此系統依據奇美醫學研究中心使用在SCI模式的實驗得到的資料與BBB(Basso,Beattie,Bresnahan)人工計分方式比較,其結果是一致的。綜合上述本研究所設計的兩個量測系統主要的優點包括穩定、高準確性、容易使用、量化的、單一量測參數及量測的結果不隨使用者而改變。
英文摘要 This study describes two novel systems to evaluate hindlimbs motor function of laboratory rats. The first system is inclined plane system, which is used for the traumatic brain injury (TBI) model of rats. The system is built around a microcontroller and uses a stepping motor to drive a ball screw which changes the angle of the inclined plane. Any of 7 inclination speeds may be selected by the user. Two infrared (IR) LED/detector pairs function as interrupt sensors for objective determination of the moment that the rat loses its grip on the textured flooring of the starting area and slips down the plane. Inclination angle at the moment of IR interrupt is recorded. A liquid crystal display(LCD) module shows the inclination speed and the inclination angle. The system can be controlled by a local keypad or by the connected PC. The prototype was used experimentally by the Chi-Mei hospital group testing traumatic brain injury (TBI) experiments, and some of their results are presented for system verification. The second system is force plate system, which is used for spinal cord injury (SCI) model of rats. The system uses strain gauges to measure individually the weight applied by each limb and also the general hindquarters of the rat and is built around a microcontroller, analog amplifier and A/D converter. The sum of weights on the individual force plates adds up to the total weight of the rat. Mathematical comparison of the weights of the different force plates allows calculation of the weight percentage of the hindquarters (W%HQ = (hindquarters weight/total weight) x 100%). When hindlimb impairment is high, the W%HQ is high and visa versa, allowing hindlimb motor function to be evaluated by the W%HQ. An actual laboratory embodiment is demonstrated and real experiments are performed on spinal cord damaged rats. Comparing our results with those of the Basso, Beattie, Bresnahan (BBB) score method confirms the proposed hardware and W%HQ metric represent very well the recovery of a rat after spinal cord injury. The above two presented systems are stable, high accuracy and easy to use. Additional advantages of the presented systems include non-dependence on human observation, only one test parameter and quantitative results.
論文目次 Abstract (Chinese) -------------------------------I
Abstract (English) -------------------------------III
Acknowledgements (Chinese) -----------------------V
Contents -----------------------------------------VI
List of Tables -----------------------------------VIII
List of Figures ----------------------------------IX
Chapter 1 Introduction ---------------------------1
Chapter 2 Materials and Methods---------------4
2.1. Inclined Plane System -----------------------4
2.1.1. Apparatus of Inclined Plane System --------4
2.1.2. Control unit of Inclined Plane System -----6
2.1.3. Software of Inclined Plane System ---------10
2.2. Force Plate System --------------------------16
2.2.1. Apparatus of Force Plate System -----------16
2.2.2. Control unit of Force Plate System --------19
2.2.3. Software of Force Plate System ------------23
Chapter 3 Testing The System------------------------29
3.1. Calibration of the Inclined Plane System ----29
3.2. Experiments of TBI --------------------------30
3.3. Calibration of the Force Plate System -------33
3.4. Experiments of SCI --------------------------34
Chapter 4 Results------------------------------------38
4.1. Results of Inclined Plane System ------------38
4.2. Results of Force Plate System ---------------39
Chapter 5 Discussion--------------------------------42
5.1. Discussion of Inclined Plane System ---------42
5.2. Discussion of Force Plate System ------------44
Chapter 6 Conclusion -----------------------------48

Reference ----------------------------------------49
參考文獻 [1].Whishaw IQ, Haun F, Kolb B. Analysis of behaviour in laboratory rodents, modern techniques in neuroscience research. New York, NY: Springer; 1999. pp.1243-75.

[2]. Combs DJ, D’Alecy LG . Motor performance in rats exposed to server forebrain ischemia: effect of fasting and 1,3-butanediol. Stroke 1987;18:503-11.

[3]. Feeney DM, Gonzalez A, Law WA. Amphetamine, haloperidol, and experience interact to affect rate of recovery after cortex injury. Science 1982;218:855-7.

[4]. Ryck MD, Reempts JV, Borgers M, Wauquier A, Janssen PA. Photochemical stroke model: flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke 1989;20:1383-90.

[5]. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 1986;17:472-6.

[6]. Giulian D, Silverman G. Solid-state animal detection system: its application to open field activity and freezing behaviour. Physiol Behav 1975;14:109-12.

[7]. Koob AO, Cirillo J, Baffs CF. A novel open field activity detector to determine spatial and temporal movement of laboratory animals after injury and disease. J Neurosci Meth 2006;157:330-6.

[8]. Rivlin AS, Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 1977;47:577-81.

[9]. Yonemori F, Yamaguchi T, Nakayama Hitoshi, Narita Koji, Hojo Shuntaro, Tamura Akira. Effect of JTP-2942, a novel thyrotropin-releasing hormone analog, on motor deficits after chronic focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2000;20:74-81.

[10]. Carter CS, Sonntag WE, Onder G, Pahor M , Physical performance and longevity in aged rats. J Gerontol Biolo Sci 2002;57a:193-7.

[11]. Hallam TM, Floyd CL, Folkerts MM, Lee LL, Gong QZ, Lyeth BG, Muizelaar JP, Breman RF. Comparison of behavioural deficits and acute neuronal degeneration in rat lateral fluid percussion and weight-drop brain injury models. J Neurotrauma 2004;21:521-9.

[12].Spangenberg EMF, Augustsson H, Dahlborn K, Essen-Gustavsson B, Cvek K. Housing-related activity in rats: effects on body weight, urinary corticosterone levels, muscle properties and performance. Lab Anim 2005;39:45-57.

[13].Chang MW, Young MS, Lin MT. An inclined plane system with microcontroller to determine limb motor function of laboratory animals. J Neurosci Meth 2008; 168:186-94.

[14].Basso DM, Beattie MS, Bresnaham JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotraum 1995;12:1-21.

[15].Bignami G. Economical test methods for developmental neurobehavioral toxicity. Environ Health Persp 1996;104:285-98.

[16].Hamers FPT, Lankhorst AJ, Van Laar TJ, Veldhuis WB, Gispen WH. Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transaction injuries. J Neurotraum 2001;18:187-201

[17].Hamers FPT, Koopmans GC, Joosten EAJ, Catwalk-assisted gait analysis in the assessment of spinal cord injury. J Neurotraum 2006;23:537-48.

[18].Chan CC, Khodarahmi K, Liu J, Sutherland D, Oschipok LW, Steeves JD, Tetzlaff W. Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and function recovery after rat spinal cord injury. Exp Neurol 2005;196:352-64.

[19].Metz GAS, Merkler D, Dietz V, Schwab ME, Fouad K. Efficient testing of motor function in spinal cord injured rats. Brain Res 2000;883:165-77.

[20].Metz GAS, Dietz V, Schwab ME, van de Meent H. The effects of unilateral pyramidal tract section on hindlimb motor performance in rat. Behav Brain Res 1998; 96:37-46.

[21].Westerga J, Gramsbergen A. The development of locomotion in the rat. Dev Brain Res 1990; 57:163-74.

[22].van de Meent H, Hamers FP, Lankhorst AJ, Buise MP, Joosten EA, Gispen WH. New assessment techniques for evaluation of posttraumatic spinal cord function in the rat. J Neurotraum 1996; 13:741-54.

[23].van de Meent H, Hamers FP, Lankhorst AJ, Buise MP, Joosten EA, Gisper WH. Beneficial eddects of the medanocortin alphamelanocyte-stimulating hormone on clinical and neurophysiological recovery after experimental spinal cord injury. Neurosurg 1997; 40:122-30.

[24].Diener PS, Bregman BS. Fetal spinal cord transplants support the development of target reaching and coordinated postural adjustments after neonatal cervical spinal cord injury. J Neurosci 1998; 18:763-78.

[25].Pearse DD, Lo TP, Cho KS, Lynch MP, Garg MS, Marcillo AE, Sanchez AR, Cruz Y, Dietrich WD, Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat. J Neurotraum 2005; 22:680-702.

[26].Behrmann DL, Bresnahan JC, Beattie MS, Shah BR. Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histologic analysis. J Neurotraum 1992; 9:197-217.

[27].McInsosk TK, Noble L, Andrews B, Faden AI . Traumatic brain injury in the rat: characterization of a midline fluid-percussion model. Cent Nerv Syst Tranma 1987;4:119-34.

[28].Wang Y, Lin SZ, Chiou AL, Williams LR, Hoffer BJ. Glial cell line-derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J Neurosci 1997;17:4341-8.

[29].Rivlin AS, Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 1977; 47:577-81.

[30].Morino T, Ogata T, Takeba J, Yamamoto H. Microgcia inhibition is a target of mild hypochermia treatment after the spinal cord injury. Spinal cord 2008; 46:425-31.

[31].Chio CC, Kuo JR, Hsian SH, Chang CP, Lin MT. Effect of brain cooling on brain ischemia and damage markers after fluid percussion brain injury in rats. Shock 2007;28:284-90.

[32].Reis DJ, Doba N. The central nervous system and neurogenic hypertension. Prog Cardiovasc Dis 1974;17:51-71.

[33].Kao CH, Chen SH, Chio CC, Lin MT. Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Shock 2007 .

[34].Shibuya S, Miyamoto O, Janjua NA, Itano T, Mori S, Norimatsu H. Post-traumatic moderate systemic hypothermia reduces TUNEL-positive cells following spinal cord injury in rats. Spinal cord 2004;42:29-34.

[35].Teitelbaum P, Schallert T, Whishaw IQ. Sources of spontaneity in motivated behavior. In Handbook of behavioral neurobiology V6, edited Satinoff E, Teitelbaum P. 1983; 23-65.

[36].Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, Holford TR, Hsu CY, Noble LJ, Nockels R, Perot PL, Salzman SK, Young W. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotraum 1996;13:343-59.
  • 同意授權校內瀏覽/列印電子全文服務,於2010-07-23起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-07-23起公開。

  • 如您有疑問,請聯絡圖書館