進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0806201823294300
論文名稱(中文) 以電腦輔助工程技術分析冠脈分岔病灶支架置放術式之影響
論文名稱(英文) Computational modeling of coronary bifurcation stenting:analysis of biomechanical impact between different stenting strategy
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 106
學期 2
出版年 107
研究生(中文) 吳承慶
研究生(英文) Cheng-Ching Wu
電子信箱 maxvic24@gmail.com
學號 P88021025
學位類別 博士
語文別 英文
論文頁數 118頁
口試委員 指導教授-胡晉嘉
口試委員-朱銘祥
口試委員-林峻立
口試委員-李政翰
口試委員-方志元
口試委員-王朝平
中文關鍵字 冠心症  心導管手術  支架  電腦模擬  生物力學 
英文關鍵字 virtual bench testing  finite element analysis  coronary bifurcation  left main trunk  provisional stenting  side branch opening 
學科別分類
中文摘要 冠狀動脈心臟病隨著人類文明的發展,成為現代人的頭號殺手之一,尤其是急性冠心症.許多的風險因子,如糖尿病,高血壓,高膽固醇血症,抽菸等等雖然已經被確認與冠心症有極高的流行病學相關性,有效的預防醫學推廣與積極的藥物控制的確使得冠心症的發生率與死亡率獲得明顯改善,但是在冠心症的發病初期的血清快速檢測,冠心症發病後的預後監測,甚或需要介入性導管手術時的最佳介入術式等等議題都尚有許多未知的領域有待科學與工程技術的開拓與分析.
本論文第一章節以心臟的基本解剖生理學作為介紹的開端,近一步帶入經皮穿刺冠狀動脈導管手術的基本概念,尤其是當今冠脈血管成像技術的主要方法會進一步加深著墨闡述.第二章節嘗試先以工程師的觀點來介紹支架設計製造的工程分類與細節,並接著討論當今臨床上常用支架的臨床分析研究.第三章節對當今曾經被發表探討過的冠脈支架置放術做電腦模擬分析的相關文獻做深入檢視,接著,在第四章節,對於冠脈分岔路做暫時單一支架置放術的各種支架整修技法,發表本人團隊利用電腦模擬技術來比較血管壁及支架上力學影響的結果差別.以上一系列相關研究起始於自於臨床心臟科醫師在臨床上觀察所發現到的未解疑惑及未被滿足的臨床需求,嘗試以工程相關技術來剖析克服困難,並期望將來此系列研究能對克服冠心症醫療照顧上未解的難處帶來希望的曙光.
英文摘要 Coronary artery disease has become one of the major cause of death and huge health burden in modern era. Many risk factors have been proven to be correlated with acute coronary syndrome, including diabetes mellitus, hypertension, dyslipidemia, and smoking, etc. The prevalence of coronary artery disease has been shown to be effectively controlled with the promotion of preventive medicine. Nevertheless, there are still many clinical unmet needs which are waited for further investigation. In modern era, percutaneous coronary intervention has become the first choice to treat coronary artery stenosis. Although this technology is widely accepted and extraordinary successful to deal with coronary artery disease, precise coronary imaging and stenting procedures remain a lot of unsolved challenges, particularly in complicated vessel structure such as severe calcified, tortuous, diffuse lesions and bifurcation region. Notably, recent studies have demonstrated the promising character of computational simulation such as finite element analysis as a useful support to the operational planning. Assorted interventional strategies have been recommended. However, no perfect solution has been verified yet. In this case, the major goal of this dissertation is that a superior comprehension of the biomechanical impact among different bifurcation strategies might be helpful to ameliorate the unresolved issues in coronary intervention. Accordingly, this thesis focused on serial structure solid model which was generated to facilitate studying clinical unresolved issues, particularly in provisional stenting process for bifurcation lesions.
論文目次 Table of content
Chapter 1. Basic concepts of coronary system, coronary intervention and imaging modalities...................1
1.1 Introduction.............................2
1.2 Basic concepts of coronary artery...................2
1.3 Coronary artery disease(CAD) and percutaneous coronary intervention(PCI)....7
1.4 Modern modalities to perform coronary imaging..............10
1.5 Clinical utilization of image processing.................16
Chapter 2. From stent design to clinical practice in real world...18
2.1 Introduction...........................20
2.2 Grouping of Stents.........................20
2.3 Impact of stent design on clinical outcomes................32
2.4 Past and current clinical available and investigational coronary stents.....35
2.5 Conclusions...........................44
Chapter 3. Computational Modeling of Bifurcation Stenting...45
3.1 Introduction...........................46
3.2 Application of computational modeling in bifurcation stenting.......48
3.3 In-vitro bench testing: advantage and disadvantage.............54
3.4 Validation/Verification and animal study.................58
3.5 Application of patient-specific model.................61
3.6 Conclusions...........................64
Chapter 4. Analysis of biomechanical impact between different provisional stenting strategy..................65
4.1 Unresolved problem in term of provisional stenting strategy........66
4.2 Study design for analysis of biomechanical outcomes.............68
4.3 The results among different provisional stenting strategies...........77
4.4 Discussion.............................87
4.5 Conclusions...........................90
Chapter 5. Final Remark and Future perspectives...........91

References..........................92


List of tables
Tables in Chapter 2.
Table 2.1: Common characters connected to the optimal stent design......21
Table 2.2: The overview of materials employed for stents............23
Table 2.3: The overview of undeveloped forms of stents...........24
Table 2.4: The overview of fabrication methods.....................25
Table 2.5: The overview of geometrical patterns..................29
Table 2.6: The overview of additions for stents.................32
Table 2.7: Drug-eluting stent timeline in first and second generation.......39
Table 2.8: The overviews of investigated polymer-free stents.........42
Table 2.9: Characteristics of some available biodegradable stents.........43

Tables in Chapter 4.
Table 4.1. The material properties of the finite element models........73


















List of figures

Figures in Chapter 1.
Figure 1.1: Anatomy of the heart. Adapted from NHLBI.............3
Figure 1.2: Anatomy of coronary artery. Adapted from PCI PEDIA.ORG.......4
Figure 1.3: The three layers of artery. Adapted from (http://www.physioweb.org/circulation/blood_vessels.html).........5
Figure 1.4: Atherosclerosis is associated with heart attacks. Adapted from NHLBI....7
Figure 1.5: Illustration of coronary by-pass surgery. Adapted from NHLBI....8
Figure 1.6: Illustration of coronary artery stenting. Adapted from NHLBI......9
Figure 1.7: Reconstruction of coronary artery by CTA..............11
Figure 1.8: Reconstruction of three dimensional data by magnetic resonance imaging shows proximal segment of the right and left coronary arteries......12
Figure 1.9: X-ray angiography: left coronary artery in spider view.......13
Figure 1.10: Intra-vascular ultrasound imaging: utilization for examination of aneurysm over left anterior descending artery............14
Figure 1.11: Utilization of optical coherence tomography to examine stent strut apposition in left circumflex artery...............15
Figures in Chapter 2.
Figure 2.1: Stent design pyramid, (Stoeckel D, Bonsignore C, Duda S. A survey of stent designs. Min Invas Ther & Allied Technol 2002;11:137-47.)...21
Figure 2.2: Assorted connectors in closed cell stent.............27
Figure 2.3: Assorted connectors in open cell stent. ..............27
Figure 2.4: In-stent restenosis is affected by strut thickness. Adapted from Briguori C. et al. J Am Coll Cardiol 2002;40:403-9.............34
Figures in Chapter 3.
Figure 3.1.: Bifurcation regions are disposed to generate atherosclerosis and a prevalent area of stenting. Adapted from Antoniadis, A.P. et al. J Am Coll Cardiol Intv. 2015; 8(10):1281–96...............46
Figure 3.2: Promote the comprehension of the mechanism of stent thrombosis and restenosis would be achieved by in vitro bench testing and computational simulations. Adapted from Antoniadis, A.P. et al. J Am Coll Cardiol Intv. 2015; 8(10):1281–96.....................47
Figure 3.3: Modified final kissing balloon dilation investigation by Mortier, et.al. Adapted from J Am Coll Cardiol Intv 2014;7:325–33.........49
Figure 3.4: Cross-Sectional View in simulation among assorted final kissing balloon strategies investigated by Mortier, et.al. Adapted from J Am Coll Cardiol Intv 2014;7:325–33.......................50
Figure 3.5: Streamlines in the foreground among assorted strut configurations which was investigated by Jimenez et al. Adapted from Ann Biomed Eng 2009; 37:1483–94........................51
Figure 3.6: Application of computed fluid dynamic models in novel stent design which was investigated by Morlacchi et al. Adapted from EuroIntervention 2014;9:1441–53...............53
Figure 3.7: Assorted strategy in bifurcation stenting by in-vitro bench testing performed by Foin et al. Adapted from JACC Cardiovasc Interv. 2012;5(1):47-56.......................55
Figure 3.8: Single side branch balloon dilation induced unfavorable stent structure deformation. In-vitro bench study performed by Foin et al. Adapted form EuroInterevntion. 2011 Sep;7(5):597-604............57
Figure 3.9: Virtual pattern of a Tryton stent reproduced with the computed aided design software. This pattern was performed by Chiastra C, et al. Adapted from EuroIntervention. 2015;11 Suppl V:V31-4...........58
Figure 3.10 Successful validation by in-vitro bench testing illustrated by Mortier et al. Adapted from EuroIntervention. 2011;7:369-76............59
Figure 3.11: Investigation of in-stent restenosis in a porcine model performed by Richter et al. Adapted from J Clin Invest 2004;113:1607–14....60
Figure 3.12: Three dimensional reconstruction by in vivo optical coherence of bifurcation illustrated by Antoniadis et al. Adapted from Eur Heart J 2013;34:2715........................63
Figures in Chapter 4.
Figure 4.1: The virtual surfaces and solid models of the bifurcation regions of the left coronary arteries......................68
Figure 4.2: The geometry of the original patient-based models..........69
Figure 4.3: Modification of patient A into different angles...........71
Figure 4.4: Modification of patient B into different angles...........71
Figure 4.5: Modification of patient C into different angles...........71
Figure 4.6: Virtual stent model creation..................72
Figure 4.7: Boundary conditions of the bifurcation artery model.........73
Figure 4.8: Simulation process in step 1 and step 2...............74
Figure 4.9: Simulation process in step 3..................75
Figure 4.10: The maximum artery deformation of all vessel with the original angle...77
Figure 4.11: The maximum artery deformation of different angles in the model for patient A..........................78
Figure 4.12: The maximum artery deformation of different angles in the model for patient B..........................78
Figure 4.13: The maximum artery deformation of different angles in the model for patient C..........................79
Figure 4.14: The distribution of maximum artery deformation in step 3 of patient A.80
Figure 4.15: The distribution of maximum artery deformation in step 3 of patient B.80
Figure 4.16: The distribution of maximum artery deformation in step 3 of patient C..81
Figure 4.17: The maximum artery equivalent stress of all vessels with the original angle..........................82
Figure 4.18: The maximum artery equivalent stress of different angles in the model for patient A..........................83
Figure 4.19: The maximum artery equivalent stress of different angles in the model for patient B..........................83
Figure 4.20: The maximum artery equivalent stress of different angles in the model for patient C..........................84
Figure 4.21: The distribution of maximum artery equivalent stress in step 3 of patient A...............................84
Figure 4.22: The distribution of maximum artery equivalent stress in step 3 of patient B.............................85
Figure 4.23: The distribution of maximum artery equivalent stress in step 3 of patient C.............................85
Figure 4.24: The maximum stent equivalent stress of all vessels with the original angle........................86
Figure 4.25: Maximum stent equivalent stress in each vessel model were illustrated as red arrow.........................86
參考文獻 Chapter 1
[1] V.L. Roger, A.S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry, T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford, C. S. Fox, H. J. Fullerton, C. Gillespie, K. J. Greenlund, S. M. Hailpern, J. A. Heit, P. M. Ho, V. J. Howard, M. K. Brett, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, D. M. Makuc, G. M. Marcus, A. Marelli, D. B. Matchar, M. M. McDermott, J. B. Meigs, C. S. Moy, D. Mozaffarian, M. E. Mussolino, G. Nichol, N. P. Paynter, D. Rosamond, P.D. Sorlie, R.S. Stafford, T. N. Turan, M. B. Turner, N. D. Wong, and J. Wylie-Rosett. Heart disease and stroke statistics 2011 update. a report from the american heart association. Circulation, 123:18–209, 2011.
[2] Elaine Nicpon. Marieb. Human Anatomy & Physiology. ISBN 0805354638. 6th edition, 2003.
[3] MedicaLook. Medicalook.com., editor. Heart. 05-03 2010.
[4] Pearson, editor. Emergency Medical Responder: A Skills Approach. Number ISBN 9780135004852. 3rd canadian edition, 2010.
[5] T. N. Wight. The extracellular matrix and atherosclerosis. Current Opinion in Lipidology, 6(5): 326–334, 1995.
[6] G. A. Holzapfel and R. W. Ogden. The cardiovascular system: anatomy, physiology, and cell biology., volume Biomechanics of Soft Tissue in Cardiovascular Systems. J. D. Humphrey AND A. D. McCulloch., CISM, Udine., 2001.
[7] T. C. Gasser, R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society Interface, 3:15–35, 2006.
[8] B. M. Learoyd and M. G. Taylor. Alterations with age in the viscoelastic prop-erties of human arterial walls. Circulation Research, 18:278–292, 1966.
[9] H. Wolinsky and S. Glagov. Structural basis for the static mechanical properties of the aortic media. Circulation Research, 14:400–413, 1964.
[10] B. V. Shekhonin, S. P. Domogatsky, V. R. Muzykantov, G. L. Idelson, and V. S. Rukosuev. Distribution of type i, iii, iv and v collagen in normal and atheroscle-rotic human arterial wall: immunomorphological characteristic. Collagen and Related Research, 5:355–368, 1985.
[11] R. W. Ogden and C. A. J. Schulze-Bauer. Phenonenological and structural as-pects of the mechanical response of arteries. ASME., New York, 2000.
[12] Topol, Eric J.; Califf, Robert M. (2007). Textbook of Cardiovascular Medicine. Lippincott Williams & Wilkins. p. 2.
[13] Aviram M, Fuhrman B (1998). "LDL oxidation by arterial wall macrophages depends on the oxidative status in the lipoprotein and in the cells: role of prooxidants vs. antioxidants". Mol Cell Biochem. 188 ((1-2)): 149–59.
[14] G. A. Sgueglia, D. Todaro, and E. Pucci. Complexity and simplicity in percutaneous bifurcation interventions. EuroIntervention, 6(5):664–5, 2010.
[15] M. De Beule, P. Mortier, S. G. Cailer, B. Verhegghe, R. Van Impe, and P. Verdonck. Realistic finite element-based stent design: the impact of balloon folding. Journal of Biomechanics, 41: 383–389, 2008.
[16] G. De Santis, M. Conti, B. Trachet, T. De Schryver, M. De Beule, J. Degroote, J. Vierendeels, F. Auricchio, P. Segers, P. Verdonck, and B. Verhegghe. Haemodynamic impact of stent-vessel (mal)apposition following carotid artery stenting: mind the gaps! Computer Methods in Biomechanics and Biomedical Engineering, 2011.
[17] B. Balakrishnan, A. R. Tzafriri, P. Seifert, A. Groothuis, C. Rogers, and E.R. Edelman. Strut position, blood flow, and drug deposition, implications for single and overlapping drug-elunting stents. Cuirculation, 111:2958–2965, 2005.
[18] R. Balossino, F. Gervaso, F. Migliavacca, and G. Dubini. Effects of different stent designs on local hemodynamics in stened arteries. Journal of Biomechanics, 41(5):1053–1061, 2008.
[19] E. Cecchi, C. Giglioli, S. Valente, C. Lazzeri, G.F. Gensini, R. Abbate, and L. Mannini. Role of haemodynamic shear stress in cardiovascular disease. Atherosclerosis, 214(2):249–256, 2011.
[20] C. Chiastra, S. Morlacchi, S. Pereira, G. Dubini, and F. Migliavacca. Computational fluid dynamics of stented coronary bifurcations studied with a hybryd discretization method. European Journal of Mechanichs - B/Fluid, 35:76–84, 2012.
[21] E. Cutri, P. Zunino, S. Morlacchi, C. Chiastra, and F. Migliavacca. Drug delivery patterns for different stenting techniques in coronary bifurcations: a comparative computational study. Biomechanics and Modeling in Mechanobiology, 12:657–669, 2013.
[22] M. Lederlin, J.B. Thambo, V. Latrabe, O. Corneloup, H. Cochet, M. Montaudon, and F. Laurent. Coronary imaging techniques with emphasis on ct and mri. Pediatric Radiology Journal, 41(12): 1516–1525, 2011.
[23] P. Campadelli, E. Casiraghi, S. Pratissoli, and G. Lombardi. Automatic abdominal organ segmentation from CT images. PhD thesis, Department of Computer Science, Universita’ degli studi di Milano., 2009.
[24] P. Schoenhagen, R.D. White, S.E. Nissen, and E.M. Tuzcu. Coronary imaging: angiography shows the stenosis, but ivus, ct, and mri show the plaque. Cleveland Clinic Journal of Medicine, 70(8):713–719, 2003.
[25] M.J. Budoff, S. Achenbach, and A. Duerinckx. Clinical utility of computed tomography and magnetic resonance techniques for noninvasive coronary angiography. Journal American College of Cardiology, 42(11):1867–1878, 2003.
[26] M.G. Friedrich. Current status of cardiovascular magnetic resonance imaging in the assessment of coronary vasculature. Canadian Journal of Cardiology, 26 Suppl A:51–55, 2010.
[27] M. Prompona, C. Cyran, K. Nikolaou, K. Bauner, M. Reiser, and A. Huber. Contrast-enhanced whole-heart coronary mra using gadofosveset 3.0 t versus 1.5 t. Academic Radiology, 17(7): 862–870, 2010.
[28] S. J. Chen and J. D. Carroll. Coronary angiography. Practical Signal and Image Processing in Clinical Cardiology, Springer-Verlag London Limited, Goldberger J.J. and Ng J., Chapter 13, pages 157–185, 2010.
[29] S. J. Chen and D. Schaper. Three-dimensional coronary visualization, part i: Modelling. Cardiology Clinics., 27:433–452, 2009.
[30] C. Blondel, G. Malandain, and R. Vaillant. Reconstruction of coronary arteries from a single rotational x-ray projection sequence. IEEE Transactions on Medical Imaging, 25:653–63, 2006.
[31] G. Schoonenberg, A. Neubauer, and M. Grass. Three-dimensional coronary visualization, part ii: 3d reconstruction. Cardiology Clinic, 27:453–465, 2009.
[32] T. Hirai and Y. Korogi. Pseudostenosis phenomenon at volume-rendered three-dimensional digital angiography of intracranial arteries: frequency, location, and effect on image evaluation. Radiology, 232:882–887, 2004.
[33] C.V. Bourantas, S. Garg, K.K. Naka, A. Thury, A. Hoye, and L.K. Michalis. Focus on the research utility of intravascular ultrasound - comparison with other invasive modalities. Cardiolovascular Ultrasound, 9(1):2, 2011.
[34] S.K. Zimmerman and J.L. Vacek. Imaging techniques in acutecoronary syndromes: a review. ISRN Cardiology, 359127, 2011.
[35] D. Dvir, H. Marom, and A. Assali. Bifurcation lesions in the coronary arteries: Early experience with a novel 3 dimensional imaging and quantitative analysis before and after stenting. EuroIntervention, 3:95–99, 2007.
[36] S. Tu, N. R. Holm, G. Koning, Z. Huang, and J. H. Reiber. Fusion of 3d qca and ivus/oct. International Journal of Cardiovascular Imaging, 27(2):197–207, 2011.
[37] C. J. Slager, J. J. Wentzel, J. C. Schuurbiers, J. A. Oomen, J. Kloet, R. Krams, C. von Birgelen, W. J. van der Giessen, P. W. Serruys, and P. J. de Feyter. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and ivus (angus) and its quantitative validation. Circulation, 102(5):511–516, 2000.
[38] R. Cardenes, J. L. Diez, I. Larrabide, H. Bogunovic, and A. F. Frangi. 3d modeling of coronary artery bifurcations from cta and conventional coronary angiography. Medical Image Computing and Computer- Assisted Intervention, 14:395–402, 2011.
[39] D. A. Steinman. Image-based computational fluid dynamics modeling in realistic arterial geometries. Annals of Biomedical Engineering, 30:483–497, 2002.
[40] C. A. Taylor and D. A. Steinman. Image-based modeling of blood floow and vessel wall dynamics: applications, methods and future directions. Annals of Biomedical Engineering: sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28-30, 2008 Pasadena, California., 38(3):11188–1203, 2010.
[41] J. Ormiston, M.Webster, S. Jack, D. MacNab, and S. Simpson Plaumann. The ast petal dedicated bifurcation stent: first in human experience. Chateterization and Cadiovascular Interventions, 70:335–340, 2007.
[42] P. Garrone, G. Biondi Zoccai, and I. Salvetti. Quantitative coronary angiography in the current area: principles and applications. Journal of Interventional Cardiology, 22:527–536, 2009.
[43] S. Rancharitar, Y. Onuma, J. P. Aben, C. Consten, B. Weijers, M. A. Morel, and P.W. Serruys. A novel dedicated quantitative coronary analysis methodology for bifurcation lesions. EuroInt-ervention, 3:553–557, 2008.
[44] D. Dvir, A. Assali, E. Lev, I. Ben Dor, A. Battler, and R. Kornowski. Percutaneous intervention in unprotected left main lesions: novel three-dimensional imaging and quantitative analysis befor and after intervention. CardioVascular Revascularization Medicine, 11:236–240, 2010.
[45] A.R. Galassi, S.D. Tomasello, and D. Capodanno. A novel 3d reconstruction system for the assessment of bifurcation lesions treated by the mini-crusch technique. Journal of Interventional Cardiology, 23:46–53, 2010.
[46] Y. Onuma, C. Girasis, J.P. Aben, G. Sarno, N. Piazza, C. Lokkerbol, M.A. Morel, and P.W. Serruys. A novel dedicated quantitative coronary analysis methodology for bifurcation lesions. Technical report, EuroIntervention, 2011.
[47] D. Gastaldi, S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, L. Petrini, and F. Migliavacca. Modeling of provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomechanics and Modeling in Mechanobiology, 9: 551–561, 2010.
[48] F. Auricchio, M. Conti, S. Marconi, A. Reali, J. L. Tolenaar, and S. Trimarchi. Patient-specific aortic endografting simulation: From diagnosis to prediction. Computers in Biology and Medicine, 43:386–394, 2013.
[49] P. Mortier, G. A. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, P. Verdonck, and B. Verhegghe. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Annals of Biomedical Engineering, 38: 88–99, 2010.
[50] S. Morlacchi, S.G. Colleoni, R. Cardenes, C. Chiastra, J.L. Diez, I. Larrabide, and F. Migliavacca. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical studies. Medical Engineering and Physics, 35(9):1272–1281, 2013.
[51] L. Goubergrits, E. Wellnhoufer, U. Kertzscher, K. Affels, C. Petz, and H.C. Hege. Coronary artery wss profling using a geometry reconstruction basedon biplane angiography. Annals of Biomedical Engineering, 37:682–691, 2009.
[52] G. De Santis, P. Mortier, M. De Beule, P. Segers, P. Verdonck, and B. Verhegghe. Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Medical and Biological Engineering and Computing, 48:371–380, 2010.

Chapter 2
[1]. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent study group. N Engl J Med 1994;331:489-95.
[2]. Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent restenosis study investigators. N Engl J Med 1994;331:496-501.
[3]. Wong P, Lau KW, Lim YL, Oesterle SN. Stent placement for non-STRESS/BENESTENT lesions: a critical review. Catheter Cardiovasc Interv 2000;51:223-33.
[4]. Stoeckel D, Bonsignore C, Duda S. A survey of stent designs. Min Invas Ther & Allied Technol 2002;11:137-47.
[5]. Hwang CW, Wu D, Edelman ER. Physiological transport forces govern drug distribution for stent-based delivery. Circulation 2001;104:600-5.
[6]. Colombo A, Stankovic G, Moses JW. Selection of coronary stents. J Am Coll Cardiol 2002;40:1021-33.
[7]. Schomig A, Neumann FJ, Kastrati A, Schuhlen H, Blasini R, Hadamitzky M, Walter H, Zitzmann-Roth EM, Richardt G, Alt E, Schmitt C, Ulm K. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N Engl J Med 1996;334:1084-9.
[8]. Leon MB, Baim DS, Popma JJ, Gordon PC, Cutlip DE, Ho KK, Giambartolomei A, Diver DJ, Lasorda DM, Williams DO, Pocock SJ, Kuntz RE. A clinical trial comparing three antithrombotic-drug regimens after coronary-artery stenting. Stent anticoagulation restenosis study investigators. N Engl J Med 1998;339:1665-71.
[9]. Colombo A, Hall P, Nakamura S, Almagor Y, Maiello L, Martini G, Gaglione A, Goldberg SL, Tobis JM. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 1995;91:1676-88.
[10]. Gurbel PA, Callahan KP, Malinin AI, Serebruany VL, Gillis J. Could stent design affect platelet activation? Results of the platelet activation in stenting (PAST) study. J Invasive Cardiol 2002;14:584-9.
[11]. Nageh T, de Belder AJ, Thomas MR, Williams IL, Wainwright RJ. A randomised trial of endoluminal reconstruction comparing the NIR stent and the Wallstent in angioplasty of long segment coronary disease: results of the RENEWAL Study. Am Heart J 2001;141:971-6.
[12]. Lansky AJ, Roubin GS, O’Shaughnessy CD, Moore PB, Dean LS, Raizner AE, Safian RD, Zidar JP, Kerr JL, Popma JJ, Mehran R, Kuntz RE, Leon MB. randomized comparison of GR-II stent and Palmaz-Schatz stent for elective treatment of coronary stenoses. Circulation 2000;102:1364-8.
[13]. Thuesen L, Andersen HR, Krusell LR, Botker HE, Jorgensen E, Kelbaek H, Kristensen SD. Randomized comparison of the coil-design Crossflex and the tubular NIR stent. Catheter Cardiovasc Interv 2003;59:8-12.
[14]. Baim DS, Cutlip DE, Midei M, Linnemeier TJ, Schreiber T, Cox D, Kereiakes D, Popma JJ, Robertson L, Prince R, Lansky AJ, Ho KK, Kuntz RE. Final results of a randomized trial comparing the MULTI-LINK stent with the Palmaz-Schatz stent for narrowings in native coronary arteries. Am J Cardiol 2001;87:157-62.
[15]. Baim DS, Cutlip DE, O’Shaughnessy CD, Hermiller JB, Kereiakes DJ, Giambartolomei A, Katz S, Lansky AJ, Fitzpatrick M, Popma JJ, Ho KK, Leon MB, Kuntz RE. Final results of a randomized trial comparing the NIR stent to the Palmaz-Schatz stent for narrowings in native coronary arteries. Am J Cardiol 2001;87:152-6.
[16]. Miketic S, Carlsson J, Tebbe U. Randomized comparison of J&J Crown stent versus NIR stent after routine coronary angioplasty. Am Heart J 2001;142:E8.
[17]. Kastrati A, Dirschinger J, Boekstegers P, Elezi S, Schuhlen H, Pache J, Steinbeck G, Schmitt C, Ulm K, Neumann FJ, Schomig A. Influence of stent design on 1-year outcome after coronary stent placement: a randomized comparison of five stent types in 1,147 unselected patients. Catheter Cardiovasc Interv 2000;50:290-7.
[18]. Kastrati A, Mehilli J, Dirschinger J, Dotzer F, Schuhlen H, Neumann FJ, Fleckenstein M, Pfafferott C, Seyfarth M, Schomig A. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISARSTEREO) trial. Circulation 2001;103:2816-21.
[19]. Park SJ, Lee CW, Hong MK, Kim JJ, Park SW, Tahk SJ, Jang YS, Seung KB, Yang JY, Jeong MH. Comparison of goldcoated NIR stents with uncoated NIR stents in patients with coronary artery disease. Am J Cardiol 2002;89:872-5.
[20]. Unverdorben M, Sippel B, Degenhardt R, Sattler K, Fries R, Abt B, Wagner E, Koehler H, Daemgen G, Scholz M, Ibrahim H, Tews KH, Hennen B, Berthold HK, Vallbracht C. Comparison of a silicon carbide-coated stent versus a noncoated stent in human beings: the Tenax versus Nir Stent Study’s long-term outcome. Am Heart J 2003;145:217.
[21]. Moses JW BC, Nukta ED, et al. The first clinical trial comparing a coated vs. a non-coated coronary stent: the Biocompatibles BiodivYsio stent in randomized control trial (DISTINCT) (abstr.). Circulation 2000;101:II-664.
[22]. Pache J, Kastrati A, Mehilli J, Schuhlen H, Dotzer F, Hausleiter J, Fleckenstein M, Neumann FJ, Sattelberger U, Schmitt C, Muller M, Dirschinger J, Schomig A. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. J Am Coll Cardiol 2003;41:1283-8.
[23]. Briguori C, Sarais C, Pagnotta P, Liistro F, Montorfano M, Chieffo A, Sgura F, Corvaja N, Albiero R, Stankovic G, Toutoutzas C, Bonizzoni E, Di Mario C, Colombo A. Instent restenosis in small coronary arteries: impact of strut thickness. J Am Coll Cardiol 2002;40:403-9.
[24]. Kastrati A, Schomig A, Dirschinger J, Mehilli J, von Welser N, Pache J, Schuhlen H, Schilling T, Schmitt C, Neumann FJ. Increased risk of restenosis after placement of gold-coated stents: results of a randomized trial comparing gold-coated with uncoated steel stents in patients with coronary artery disease. Circulation 2000;101:2478-83.
[25]. Reifart N, Morice MC, Silber S, Benit E, Hauptmann KE, de Sousa E, Webb J, Kaul U, Chan C, Thuesen L, Guagliumi G, Cobaugh M, Dawkins K. The NUGGET study: NIR ultra gold-gilded equivalency trial. Catheter Cardiovasc Interv 2004;62:18-25.
[26]. Silber S. Final results of the NIRTOP trial (Personal Comunication). Euro percutaneous course of revascularization (PCR) symposium. Paris, France: May 14-18, 2003.
[27]. Tanajura LF, Abizaid AA, Feres F, Pinto I, Mattos L, Staico R. Randomized intravascular ultrasound comparison between patients that underwent amorphous hydrogenated Silicon- Carbide coated stent deployment versus uncoated stents (abstr.). J Am Coll Cardiol 2003;41:58A.
[28]. Wohrle J, Al-Khayer E, Grotzinger U, Schindler C, Kochs M, Hombach V, Hoher M. Comparison of the heparin coated vs the uncoated Jostent-no influence on restenosis or clinical outcome. Eur Heart J 2001;22:1808-16.
[29]. Mehran R, Aymong ED, Ashby DT, Fischell T, Whitworth H, Jr., Siegel R, Thomas W, Wong SC, Narasimaiah R, Lansky AJ, Leon MB. Safety of an aspirin-alone regimen after intracoronary stenting with a heparin-coated stent: final results of the HOPE (HEPACOAT and an antithrombotic regimen of aspirin alone) study. Circulation 2003;108:1078-83.
[30]. Briguori C, De Gregorio J, Nishida T, Adamian M, Albiero R, Tucci G, Di Mario C, Colombo A. polytetrafluoroethylenecovered stent for the treatment of narrowings in aorticocoronary saphenous vein grafts. Am J Cardiol 2000;86:343-6.
[31]. Schachinger V, Hamm CW, Munzel T, Haude M, Baldus S, Grube E, Bonzel T, Konorza T, Koster R, Arnold R, Haase J, Probst P, vom Dahl J, Neumann FJ, Mudra H, Hennen B, Thiele L, Zeiher AM. A randomized trial of polytetrafluoroethylene- membrane-covered stents compared with conventional stents in aortocoronary saphenous vein grafts. J Am Coll Cardiol 2003;42:1360-9.
[32]. Morice MC, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, Colombo A, Schuler G, Barragan P, Guagliumi G, Molnar F, Falotico R. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002;346:1773-80.
[33]. Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O’Shaughnessy C, Caputo RP, Kereiakes DJ, Williams DO, Teirstein PS, Jaeger JL, Kuntz RE. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 2003;349:1315-23.
[34]. Schofer J, Schluter M, Gershlick AH, Wijns W, Garcia E, Schampaert E, Breithardt G. Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, randomised controlled trial (E-SIRIUS). Lancet 2003;362:1093-9.
[35]. Schampaert E, Cohen EA, Schluter M, Reeves F, Traboulsi M, Title LM, Kuntz RE, Popma JJ. The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries (CSIRIUS). J Am Coll Cardiol 2004;43:1110-5.
[36]. Ardissino D, Cavallini C, Bramucci E, Indolfi C, Marzocchi A, Manari A, Angeloni G, Carosio G, Bonizzoni E, Colusso S, Repetto M, Merlini PA. Sirolimus-eluting vs uncoated stents for prevention of restenosis in small coronary arteries: a randomized trial. Jama 2004;292:2727-34.
[37]. Grube E, Silber S, Hauptmann KE, Mueller R, Buellesfeld L, Gerckens U, Russell ME. TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation 2003;107:38-42.
[38]. Colombo A, Drzewiecki J, Banning A, Grube E, Hauptmann K, Silber S, Dudek D, Fort S, Schiele F, Zmudka K, Guagliumi G, Russell ME. . Randomized study to assess the effectiveness of slow- and moderate-release polymerbased paclitaxel-eluting stents for coronary artery lesions. Circulation 2003;108:788-94.
[39]. Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, Turco M, Caputo R, Bergin P, Greenberg J, Popma JJ, Russell ME. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 2004;350:221-31.
[40]. Gershlick A, De Scheerder I, Chevalier B, Stephens-Lloyd A, Camenzind E, Vrints C, Reifart N, Missault L, Goy JJ, Brinker JA, Raizner AE, Urban P, Heldman AW. Inhibition of restenosis with a paclitaxel-eluting, polymer-free coronary stent: the European evaLUation of pacliTaxel eluting stent (ELUTES) trial. Circulation 2004;109:487-93.
[41]. Park SJ, Shim WH, Ho DS, Raizner AE, Park SW, Hong MK, Lee CW, Choi D, Jang Y, Lam R, Weissman NJ, Mintz GS. A paclitaxel-eluting stent for the prevention of coronary restenosis. N Engl J Med 2003;348:1537-45.
[42]. Lansky AJ, Costa RA, Mintz GS, Tsuchiya Y, Midei M, Cox DA, O’Shaughnessy C, Applegate RA, Cannon LA, Mooney M, Farah A, Tannenbaum MA, Yakubov S, Kereiakes DJ, Wong SC, Kaplan B, Cristea E, Stone GW, Leon MB, Knopf WD, O’Neill WW. Non-polymer-based paclitaxel-coated coronary stents for the treatment of patients with de novo coronary lesions: angiographic follow- up of the DELIVER clinical trial. Circulation 2004; 109:1948-54.
[43]. Colombo A, Moses JW, Morice MC, Ludwig J, Holmes DR, Jr., Spanos V, Louvard Y, Desmedt B, Di Mario C, Leon MB. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation 2004;109:1244-9.
[44]. Moussa I, Leon MB, Baim DS, O’Neill WW, Popma JJ, Buchbinder M, Midwall J, Simonton CA, Keim E, Wang P, Kuntz RE, Moses JW. Impact of sirolimus-eluting stents on outcome in diabetic patients: a SIRIUS (SIRolImUS-coated Bx Velocity balloon-expandable stent in the treatment of patients with de novo coronary artery lesions) substudy. Circulation 2004;109:2273-8.
[45]. McFadden EP, Stabile E, Regar E, Cheneau E, Ong AT, Kinnaird T, Suddath WO, Weissman NJ, Torguson R, Kent KM, Pichard AD, Satler LF, Waksman R, Serruys PW. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 2004;364:1519-21.
[46]. Hoffmann, R.; Mintz, G.S.; Dussaillant, G.R.; Popma, J.J.; Pichard, A.D.; Satler, L.F.; Kent, K.M.; Griffin, J.; Leon, M.B. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation 1996, 94, 1247–1254.
[47]. Chen, M.S.; John, J.M.; Chew, D.P.; Lee, D.S.; Ellis, S.G.; Bhatt, D.L. Bare metal stent restenosis is not a benign clinical entity. Am. Heart J. 2006, 151, 1260–1264.
[48]. Briguori, C.; Sarais, C.; Pagnotta, P.; Liistro, F.; Montorfano, M.; Chieffo, A.; Sgura, F.; Corvaja, N.; Albiero, R.; Stankovic, G.; et al. In-stent restenosis in small coronary arteries: Impact of strut thickness. J. Am. Coll. Cardiol. 2002, 40, 403–409.
[49]. Kereiakes, D.J.; Cox, D.A.; Hermiller, J.B.; Midei, M.G.; Bachinsky,W.B.; Nukta, E.D.; Leon, M.B.; Fink, S.; Marin, L.; Lansky, A.J.; et al. Usefulness of a cobalt chromium coronary stent alloy. Am. J. Cardiol. 2003, 92, 463–466.
[50]. Sketch, M.H., Jr.; Ball, M.; Rutherford, B.; Popma, J.J.; Russell, C.; Kereiakes, D.J.; Driver, I. Evaluation of the medtronic (driver) cobalt-chromium alloy coronary stent system. Am. J. Cardiol. 2005, 95, 8–12.
[51]. Kim, Y.H.; Lee, C.W.; Hong, M.K.; Park, S.W.; Tahk, S.J.; Yang, J.Y.; Saito, S.; Santoso, T.; Quan, L.; Ge, J.; et al. Randomized comparison of carbon ion-implanted stent versus bare metal stent in coronary artery disease: The Asian Pacific Multicenter Arthos Stent Study (PASS) trial. Am. Heart J. 2005, 149, 336–341.
[52]. Meireles, G.C.; de Abreu, L.M.; Forte, A.A.; Sumita, M.K.; Sumita, J.H.; Jdel, C.A. Randomized comparative study of diamond-like carbon coated stainless steel stent versus uncoated stent implantation in patients with coronary artery disease. Arq. Bras. Cardiol. 2007, 88, 390–395.
[53]. Unverdorben, M.; Sippel, B.; Degenhardt, R.; Sattler, K.; Fries, R.; Abt, B.; Wagner, E.; Koehler, H.; Daemgen, G.; Scholz, M.; et al. Comparison of a silicon carbide-coated stent versus a noncoated stent in human beings: The Tenax versus Nir Stent Study’s long-term outcome. Am. Heart J. 2003, 145, e17.
[54]. Windecker, S.; Simon, R.; Lins, M.; Klauss, V.; Eberli, F.R.; Roffi, M.; Pedrazzini, G.; Moccetti, T.;Wenaweser, P.; Togni, M.; et al. Randomized comparison of a titanium-nitride-oxide-coated stent with a stainless steel stent
for coronary revascularization: The TiNOX trial. Circulation 2005, 111, 2617–2622.
[55]. Turco, M.A.; Ormiston, J.A.; Popma, J.J.; Mandinov, L.; O’Shaughnessy, C.D.; Mann, T.; McGarry, T.F.; Wu, C.J.; Chan, C.;Webster, M.W.; et al. Polymer-based, paclitaxel-eluting TAXUS Liberte stent in de novo lesions: The pivotal TAXUS ATLAS trial. J. Am. Coll. Cardiol. 2007, 49, 1676–1683.
[56]. Stettler, C.; Wandel, S.; Allemann, S.; Kastrati, A.; Morice, M.C.; Schomig, A.; Pfisterer, M.E.; Stone, G.W.; Leon, M.B.; de Lezo, J.S.; et al. Outcomes associated with drug-eluting and bare-metal stents: A collaborative network meta-analysis. Lancet 2007, 370, 937–948.
[57]. Windecker, S.; Remondino, A.; Eberli, F.R.; Juni, P.; Raber, L.;Wenaweser, P.; Togni, M.; Billinger, M.; Tuller, D.; Seiler, C.; et al. Sirolimus-eluting and paclitaxel-eluting stents for coronary revascularization. N. Engl. J. Med. 2005, 353, 653–662.
[58]. Kastrati, A.; Dibra, A.; Eberle, S.; Mehilli, J.; de Lezo, J.S.; Goy, J.J.; Ulm, K.; Schomig, A. Sirolimus-eluting stents vs. paclitaxel-eluting stents in patients with coronary artery disease: Meta-analysis of randomized trials. JAMA 2005, 294, 819–825.
[59]. Schomig, A.; Dibra, A.; Windecker, S.; Mehilli, J.; de Lezo, J.S.; Kaiser, C.; Park, S.J.; Goy, J.J.; Lee, J.H.; di Lorenzo, E.; et al. A meta-analysis of 16 randomized trials of sirolimus-eluting stents versus paclitaxel-eluting stents in patients with coronary artery disease. J. Am. Coll. Cardiol. 2007, 50, 1373–1380.
[60]. Camenzind, E.; Steg, P.G.; Wijns, W. Stent thrombosis late after implantation of first-generation drug-eluting stents: A cause for concern. Circulation 2007, 115, 1440–1455.
[61]. Lagerqvist, B.; James, S.K.; Stenestrand, U.; Lindback, J.; Nilsson, T.; Wallentin, L.; Group, S.S. Long-term outcomes with drug-eluting stents versus bare-metal stents in Sweden. N. Engl. J. Med. 2007, 356, 1009–1019.
[62]. Nordmann, A.J.; Briel, M.; Bucher, H.C. Mortality in randomized controlled trials comparing drug-eluting vs. bare metal stents in coronary artery disease: A meta-analysis. Eur. Heart J. 2006, 27, 2784–2814.
[63]. Slottow, T.L.P.; Steinberg, D.H.; Roy, P.K.; Buch, A.N.; Okabe, T.; Xue, Z.; Kaneshige, K.; Torguson, R.; Lindsay, J.; Pichard, A.D.; et al. Observations and outcomes of definite and probable drug-eluting stent thrombosis seen at a single hospital in a four-year period. Am. J. Cardiol. 2008, 102, 298–303.
[64]. Cronin, C.J.; Ballenger, R.G. Alcohol use and negative consequences among American college students in West Germany. Int. J. Addict. 1991, 26, 1123–1136.
[65]. Joner, M.; Nakazawa, G.; Finn, A.V.; Quee, S.C.; Coleman, L.; Acampado, E.; Wilson, P.S.; Skorija, K.; Cheng, Q.; Xu, X.; et al. Endothelial cell recovery between comparator polymer-based drug-eluting stents. J. Am. Coll. Cardiol. 2008, 52, 333–342.
[66]. Fajadet, J.; Wijns, W.; Laarman, G.J.; Kuck, K.H.; Ormiston, J.; Munzel, T.; Popma, J.J.; Fitzgerald, P.J.; Bonan, R.; Kuntz, R.E.; et al. Randomized, double-blind, multicenter study of the Endeavor zotarolimus-eluting phosphorylcholine-encapsulated stent for treatment of native coronary artery lesions: Clinical and angiographic results of the ENDEAVOR II trial. Circulation 2006, 114, 798–806.
[67]. Bangalore, S.; Kumar, S.; Fusaro, M.; Amoroso, N.; Attubato, M.J.; Feit, F.; Bhatt, D.L.; Slater, J. Short- and long-term outcomes with drug-eluting and bare-metal coronary stents: A mixed-treatment comparison analysis of 117 762 patient-years of follow-up from randomized trials. Circulation 2012, 125, 2873–2891.
[68]. Kandzari, D.E.; Mauri, L.; Popma, J.J.; Turco, M.A.; Gurbel, P.A.; Fitzgerald, P.J.; Leon, M.B. Late-term clinical outcomes with zotarolimus- and sirolimus-eluting stents. 5-year follow-up of the ENDEAVOR III (a randomized controlled trial of the medtronic endeavor drug [ABT-578] eluting coronary stent system versus the cypher sirolimus-eluting coronary stent system in de novo native coronary artery lesions). JACC Cardiovasc. Interv. 2011, 4, 543–550.
[69]. Camenzind, E.;Wijns,W.; Mauri, L.; Kurowski, V.; Parikh, K.; Gao, R.; Bode, C.; Greenwood, J.P.; Boersma, E.; Vranckx, P.; et al. Stent thrombosis and major clinical events at 3 years after zotarolimus-eluting or sirolimus-eluting coronary stent implantation: A randomised, multicentre, open-label, controlled trial. Lancet 2012, 380, 1396–1405.
[70]. Kirtane, A.J.; Leon, M.B.; Ball, M.W.; Bajwa, H.S.; Sketch, M.H., Jr.; Coleman, P.S.; Stoler, R.C.; Papadakos, S.; Cutlip, D.E.; Mauri, L.; et al. The “final” 5-year follow-up from the ENDEAVOR IV trial comparing a zotarolimus-eluting stent with a paclitaxel-eluting stent. JACC Cardiovasc. Interv. 2013, 6, 325–333.
[71]. Park, D.W.; Kim, Y.H.; Yun, S.C.; Kang, S.J.; Lee, S.W.; Lee, C.W.; Park, S.W.; Seong, I.W.; Lee, J.H.; Tahk, S.J.; et al. Comparison of zotarolimus-eluting stents with sirolimus- and paclitaxel-eluting stents for coronary revascularization: The ZEST (comparison of the efficacy and safety of zotarolimus-eluting stent with sirolimus-eluting and paclitaxel-eluting stent for coronary lesions) randomized trial. J. Am. Coll. Cardiol. 2010, 56, 1187–1195.
[72]. Sabate, M.; Cequier, A.; Iniguez, A.; Serra, A.; Hernandez-Antolin, R.; Mainar, V.; Valgimigli, M.; Tespili, M.; den Heijer, P.; Bethencourt, A.; et al. Everolimus-eluting stent versus bare-metal stent in ST-segment elevation myocardial infarction (EXAMINATION): 1 year results of a randomised controlled trial. Lancet 2012, 380, 1482–1490.
[73]. Kaiser, C.; Galatius, S.; Erne, P.; Eberli, F.; Alber, H.; Rickli, H.; Pedrazzini, G.; Hornig, B.; Bertel, O.; Bonetti, P.; et al. Drug-eluting versus bare-metal stents in large coronary arteries. N. Engl. J. Med. 2010, 363, 2310–2319.
[74]. Kedhi, E.; Joesoef, K.S.; McFadden, E.; Wassing, J.; van Mieghem, C.; Goedhart, D.; Smits, P.C. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): A randomised trial. Lancet 2010, 375, 201–209.
[75]. Stone, G.W.; Rizvi, A.; Newman, W.; Mastali, K.; Wang, J.C.; Caputo, R.; Doostzadeh, J.; Cao, S.; Simonton, C.A.; Sudhir, K.; et al. Everolimus-eluting versus paclitaxel-eluting stents in coronary artery disease. N. Engl. J. Med. 2010, 362, 1663–1674.
[76]. Jensen, L.O.; Thayssen, P.; Christiansen, E.H.; Maeng,M.; Ravkilde, J.; Hansen, K.N.; Hansen, H.S.; Krusell, L.; Kaltoft, A.; Tilsted, H.H.; et al. Safety and efficacy of everolimus-versus sirolimus-eluting stents: 5-year results from SORT OUT IV. J. Am. Coll. Cardiol. 2016, 67, 751–762.
[77]. Shiomi, H.; Kozuma, K.; Morimoto, T.; Igarashi, K.; Kadota, K.; Tanabe, K.; Morino, Y.; Akasaka, T.; Abe, M.; Suwa, S.; et al. Long-term clinical outcomes after everolimus- and sirolimus-eluting coronary stent implantation: Final 3-year follow-up of the randomized evaluation of sirolimus-eluting versus everolimus-eluting stent trial. Circ. Cardiovasc. Interv. 2014, 7, 343–354.
[78]. Serruys, P.W.; Silber, S.; Garg, S.; van Geuns, R.J.; Richardt, G.; Buszman, P.E.; Kelbaek, H.; van Boven, A.J.; Hofma, S.H.; Linke, A.; et al. Comparison of zotarolimus-eluting and everolimus-eluting coronary stents. N. Engl. J. Med. 2010, 363, 136–146.
[79]. Von Birgelen, C.; Basalus, M.W.; Tandjung, K.; van Houwelingen, K.G.; Stoel, M.G.; Louwerenburg, J.H.; Linssen, G.C.; Said, S.A.; Kleijne, M.A.; Sen, H.; et al. A randomized controlled trial in second-generation zotarolimus-eluting resolute stents versus everolimus-eluting Xience V stents in real-world patients: The TWENTE trial. J. Am. Coll. Cardiol. 2012, 59, 1350–1361.
[80]. Serruys, P.W.; Garg, S.; Abizaid, A.; Ormiston, J.; Windecker, S.; Verheye, S.; Dubois, C.; Stewart, J.; Hauptmann, K.E.; Schofer, J.; et al. A randomised comparison of novolimus-eluting and zotarolimus-eluting coronary stents: 9-month follow-up results of the EXCELLA II study. EuroIntervention 2010, 6, 195–205.
[81] Cook S, Ladich E, Nakazawa G et al. Correlation of intravascular ultrasound findings with histopathological analysis of thrombus aspirates in patients with very late drug-eluting stent thrombosis. Circulation 120, 391–399 (2009).
[82] Byrne RA, Iijima R, Mehilli J et al. Durability of antirestenotic efficacy in drug-eluting stents with and without permanent polymer. JACC Cardiovasc. Interv. 2, 291–299 (2009).
[83] Chevalier B, Serruys PW, Silber S et al. Randomised comparison of Nobori, Biolimus A9-eluting coronary stent with a Taxus®, paclitaxel-eluting coronary stent in patients with stenosis in native coronary arteries: the Nobori 1 trial. EuroIntervention 2, 426–434 (2007).
[84] Chevalier B, Silber S, Park SJ et al. Randomized comparison of the Nobori Biolimus A9-eluting coronary stent with the Taxus Liberté paclitaxel-eluting coronary stent in patients with stenosis in native coronary arteries: the NOBORI 1 trial – Phase 2. Circ. Cardiovasc. Interv. 2, 188–195 (2009).
[85] Windecker S, Serruys PW, Wandel S et al. Biolimus eluting stent with biodegradable polymer versus sirolimus-eluting stent with durable polymer for coronary revascularization (LEADERS): a randomized noninferiority trial. Lancet 372, 1163–1173 (2008). Landmark RCT comparing a biodegradablepolymer second-generation DES with a durable polymer first-generation DES.
[86] Stefanini GG, Kalesan B, Serruys PW et al. Long-term clinical outcomes of biodegradable polymer biolimus-eluting stents versus durable polymer sirolimus-eluting stents in patients with coronary artery disease (LEADERS): 4 year follow-up of a randomised noninferiority trial. Lancet 378, 1940–1948 (2011).
[87] Grube E, Buellesfeld L, Neumann FJ et al. Six-month clinical and angiographic results of a dedicated drug-eluting stent for the treatment of coronary bifurcation narrowings. Am. J. Cardiol. 99, 1691–1697 (2007).
[88] Verheye S, Agostoni P, Dubois CL et al. 9-month clinical, angiographic, and intravascular ultrasound results of a prospective evaluation of the Axxess self-expanding Biolimus A9-eluting stent in coronary bifurcation lesions: the DIVERGE (Drug-Eluting Stent Intervention for Treating Side Branches Effectively) study. J. Am. Coll. Cardiol. 53, 1031–1039 (2009).
[89] Meredith IT, Verheye S, Dubois CL et al. Primary endpoint results of the EVOLVE trial: a randomized evaluation of a novel bioabsorbable polymer-coated, everolimus-eluting coronary stent. J. Am. Coll. Cardiol. 59, 1362–1370 (2012).
[90] Rutsch W. Multi-center first-in-man study with the lowest known limus dose on the Elixir Medical myolimus eluting coronary stent system with a durable polymer: nine months clinical and six month angiographic and IVUS follow-up. Presented at: EuroPCR. Barcelona, Spain, 19–22 May 2009.
[91] Schofer J. Multicentre, first-in-man study on the Elixir myolimus eluting coronary stent system with bioabsorbable polymer: 12-month clinical and angiographic/IVUS results. Presented at: EuroPCR. Paris, France, 25–28 May 2010.
[92]. Tada, N.; Virmani, R.; Grant, G.; Bartlett, L.; Black, A.; Clavijo, C.; Christians, U.; Betts, R.; Savage, D.; Su, S.H.; et al. Polymer-free biolimus a9-coated stent demonstrates more sustained intimal inhibition, improved healing, and reduced inflammation compared with a polymer-coated sirolimus-eluting cypher stent in a porcine model. Circ. Cardiovasc. Interv. 2010, 3, 174–183.
[93]. Urban, P.; Meredith, I.T.; Abizaid, A.; Pocock, S.J.; Carrie, D.; Naber, C.; Lipiecki, J.; Richardt, G.; Iniguez, A.; Brunel, P.; et al. Polymer-free drug-coated coronary stents in patients at high bleeding risk. N. Engl. J. Med. 2015, 373, 2038–2047.
[94]. Lansky, A.J.; Costa, R.A.; Mintz, G.S.; Tsuchiya, Y.; Midei, M.; Cox, D.A.; O1Shaughnessy, C.; Applegate, R.A.; Cannon, L.A.; Mooney, M.; et al. Non-polymer-based paclitaxel-coated coronary stents for the treatment of patients with de novo coronary lesions: Angiographic follow-up of the DELIVER clinical trial. Circulation 2004, 109, 1948–1954.
[95]. Carrie, D.; Berland, J.; Verheye, S.; Hauptmann, K.E.; Vrolix, M.; Violini, R.; Dibie, A.; Berti, S.; Maupas, E.; Antoniucci, D.; et al. A multicenter randomized trial comparing amphilimus—With paclitaxel-eluting stents in de novo native coronary artery lesions. J. Am. Coll. Cardiol. 2012, 59, 1371–1376.
[96] Yosinobu Onuma and Patrick W. Serruys. Bioresorbable Scaffold : The Advent of a New Era in Percutaneous Coronary and Peripheral Revascularization? Circulation 2011, 123:779-797

Chapter 3
1. Lassen JF, Holm NR, Stankovic G, et al. Percutaneous coronary intervention for coronary bifurcation disease: consensus from the first 10 years of the European Bifurcation Club meetings. Euro- Intervention 2014;10:545–60.
2. Nakazawa G, Yazdani SK, Finn AV, Vorpahl M, Kolodgie FD, Virmani R. Pathological findings at bifurcation lesions: the impact of flow distribution
on atherosclerosis and arterial healing after stent implantation. J Am Coll Cardiol 2010;55: 1679–87.
3. Colombo A, Moses JW, Morice MC, et al. Randomized study to evaluate sirolimus-eluting stents implanted at coronary bifurcation lesions. Circulation 2004;109:1244–9.
4. Richter Y, Edelman ER. Cardiology is flow. Circulation 2006;113:2679–82.
5. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 2007;49:2379–93.
6. Koskinas KC, Chatzizisis YS, Antoniadis AP, Giannoglou GD. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol 2012;59:1337–49.
7. Koskinas KC, Chatzizisis YS, Baker AB, Edelman ER, Stone PH, Feldman CL. The role of low endothelial shear stress in the conversion of atherosclerotic lesions from stable to unstable plaque. Curr Opin Cardiol 2009;24: 580–90.
8. Giannoglou GD, Antoniadis AP, Koskinas KC, Chatzizisis YS. Flow and atherosclerosis in coronary bifurcations. EuroIntervention 2010;6 Suppl J:J16–23.
9. Antoniadis AP, Giannopoulos AA, Wentzel JJ, et al. Impact of local flow haemodynamics on atherosclerosis in coronary artery bifurcations. EuroIntervention 2015;11 Suppl V:V18–22.
10. Holzapfel GA, Stadler M, Gasser TC. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J Biomech Eng 2005;127:166–80.
11. Morlacchi S, Migliavacca F. Modeling stented coronary arteries: where we are, where to go. Ann Biomed Eng 2013;41:1428–44.
12. Duraiswamy N, Schoephoerster RT, Moore JE Jr. Comparison of near-wall hemodynamic parameters in stented artery models. J Biomech Eng 2009;131:061006.
13. Foin N, Gutierrez-Chico JL, Nakatani S, et al. Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance: implications for the management of incomplete stent apposition. Circ Cardiovasc Interv 2014;7:180–9.
14. Migliavacca F, Chiastra C, Chatzizisis YS, Dubini G. Virtual bench testing to study coronary bifurcation stenting. EuroIntervention 2015;11 Suppl V:V31–4.
15. Martin D, Boyle FJ. Computational structural modelling of coronary stent deployment: a review. Comput Methods Biomech Biomed Engin 2011;14: 331–48.
16. Murphy J, Boyle F. Predicting neointimal hyperplasia in stented arteries using time-dependent computational fluid dynamics: a review. Comput Biol Med 2010;40:408–18.
17. Gijsen FJ, Migliavacca F, Schievano S, et al. Simulation of stent deployment in a realistic human coronary artery. Biomed Eng Online 2008;7:23.
18. Chiastra C, Morlacchi S, Gallo D, et al. Computational fluid dynamic simulations of image-based stented coronary bifurcation models. J R Soc Interface 2013;10:20130193.
19. Morlacchi S, Colleoni SG, Cardenes R, et al. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med Eng Phys 2013;35:1272–81.
20. Gundert TJ, Shadden SC, Williams AR, Koo BK, Feinstein JA, Ladisa JF Jr. A rapid and computationally inexpensive method to virtually implant current and next-generation stents into subjectspecific computational fluid dynamics models. Ann Biomed Eng 2011;39:1423–37.
21. Ellwein LM, Otake H, Gundert TJ, et al. Optical coherence tomography for patient-specific 3D artery reconstruction and evaluation of wall shear stress in a left circumflex coronary artery. Cardiovasc Eng Technol 2011;2:212–27.
22. Chiastra C, Morlacchi S, Pereira S, Dubini G, Migliavacca F. Computational fluid dynamics of stented coronary bifurcations studied with a hybrid discretization method. Eur J Mech B/Fluids 2012;35:76–84.
23. De Santis G, De Beule M, Segers P, Verdonck P, Verhegghe B. Patient-specific computational haemodynamics: generation of structured and conformal hexahedral meshes from triangulated surfaces of vascular bifurcations. Comput Methods Biomech Biomed Engin 2011;14:797–802.
24. Loree HM, Grodzinsky AJ, Park SY, Gibson LJ, Lee RT. Static circumferential tangential modulus of human atherosclerotic tissue. J Biomech 1994; 27:195–204.
25. Akyildiz AC, Speelman L, Gijsen FJ. Mechanical properties of human atherosclerotic intima tissue. J Biomech 2014;47:773–83.
26. Zhao S, Gu L, Froemming SR. Finite element analysis of the implantation of a self-expanding stent: impact of lesion calcification. J Med Devices 2012;6:21001.
27. Pericevic I, Lally C, Toner D, Kelly DJ. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med Eng Phys 2009;31:428–33.
28. Gastaldi D, Morlacchi S, Nichetti R, et al. Modelling of the provisional side branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech Model Mechanobiol 2010;9:551–61.
29. Mortier P. Computer Modelling of Coronary Bifurcation Stenting. Ghent, Belgium: Ghent University, 2010.
30. Kolandaivelu K, Leiden BB, Edelman ER. Predicting response to endovascular therapies: dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty. J Biomech 2014;47:908–21.
31. Morlacchi S, Chiastra C, Cutri E, et al. Stent deformation, physical stress, and drug elution obtained with provisional stenting, conventional culotte and Tryton-based culotte to treat bifurcations: a virtual simulation study. EuroIntervention 2014;9:1441–53.
32. Duraiswamy N, Jayachandran B, Byrne J, Moore JE Jr., Schoephoerster RT. Spatial distribution of platelet deposition in stented arterial models under physiologic flow. Ann Biomed Eng 2005;33:1767–77.
33. Tzafriri AR, Vukmirovic N, Kolachalama VB, Astafieva I, Edelman ER. Lesion complexity determines arterial drug distribution after local drug delivery. J Control Release 2010;142:332–8.
34. Cutri E, Zunino P, Morlacchi S, Chiastra C, Migliavacca F. Drug delivery patterns for different stenting techniques in coronary bifurcations: a comparative computational study. Biomech Model Mechanobiol 2013;12:657–69.
35. Mortier P, De Beule M, Van Loo D, Verhegghe B, Verdonck P. Finite element analysis of side branch access during bifurcation stenting. Med Eng Phys 2009;31:434–40.
36. Guerin P, Pilet P, Finet G, et al. Drug-eluting stents in bifurcations: bench study of strut deformation and coating lesions. Circ Cardiovasc
Interv 2010;3:120–6.
37. Basalus MW, van Houwelingen KG, Ankone MJ, Feijen J, von Birgelen C. Micro-computed tomographic assessment following extremely oversized partial postdilatation of drug-eluting stents. EuroIntervention 2010;6:141–8.
38. Murasato Y. Bench testing of coronary bifurcation stenting techniques: How is it done? Does it help technical decision making? In: Moussa ID, Colombo A, editors. Tips and Tricks in Interventional Therapy of Coronary Bifurcation Lesions. location. London, UK: Informa Healthcare, 2010: 193–210.
39. Hildick-Smith D, Lassen JF, Albiero R, et al. Consensus from the 5th European Bifurcation Club meeting. EuroIntervention 2010;6:34–8.
40. Mortier P, Hikichi Y, Foin N, et al. Provisional stenting of coronary bifurcations: insights into final kissing balloon post-dilation and stent design by computational modeling. J Am Coll Cardiol Intv 2014;7:325–33.
41. Morlacchi S, Chiastra C, Gastaldi D, Pennati G, Dubini G, Migliavacca F. Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery. J Biomech Eng 2011; 133:121010.
42. Basmadjian D. The effect of flow and mass transport in thrombogenesis. Ann Biomed Eng 1990;18:685–709.
43. Kolandaivelu K, Swaminathan R, Gibson WJ, et al. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation 2011;123:1400–9.
44. Kolandaivelu K, Edelman ER. Environmental influences on endovascular stent platelet reactivity: an in vitro comparison of stainless steel and gold surfaces. J Biomed Mater Res A 2004;70: 186–93.
45. LaDisa JF Jr., Olson LE, Molthen RC, et al. Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am J Physiol Heart Circ Physiol 2005;288:H2465–75.
46. Chen HY, Hermiller J, Sinha AK, Sturek M, Zhu L, Kassab GS. Effects of stent sizing on endothelial and vessel wall stress: potential mechanisms for in-stent restenosis. J Appl Physiol (1985) 2009;106:1686–91.
47. Gijsen FJ, Oortman RM, Wentzel JJ, et al. Usefulness of shear stress pattern in predicting neointima distribution in sirolimus-eluting stents in coronary arteries. Am J Cardiol 2003;92:1325–8.
48. Jimenez JM, Davies PF. Hemodynamically driven stent strut design. Ann Biomed Eng 2009; 37:1483–94.
49. Sick P, Huttl T, Niebauer J, et al. Influence of residual stenosis after percutaneous coronary intervention with stent implantation on development of restenosis and stent thrombosis. Am J Cardiol 2003;91:148–53.
50. Raber L, Juni P, Loffel L, et al. Impact of stent overlap on angiographic and long-term clinical outcome in patients undergoing drug-eluting stent implantation. J Am Coll Cardiol 2010;55: 1178–88.
51. Kassab GS, Navia JA. Biomechanical considerations in the design of graft: the homeostasis hypothesis. Annu Rev Biomed Eng 2006;8:499–535.
52. Thubrikar MJ, Baker JW, Nolan SP. Inhibition of atherosclerosis associated with reduction of arterial intramural stress in rabbits. Arteriosclerosis 1988;8:410–20.
53. Chen HY, Sinha AK, Choy JS, et al. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress. Am J Physiol Heart Circ Physiol 2011;301:H2254–63.
54. Ormiston JA, Webster MW, El Jack S, et al. Drug-eluting stents for coronary bifurcations: bench testing of provisional side-branch strategies. Catheter Cardiovasc Interv 2006;67:49–55.
55. Foin N, Mattesini A, Ghione M, et al. Tools and techniques clinical: optimising stenting strategy in bifurcation lesions with insights from in vitro bifurcation models. EuroIntervention 2013;9: 885–7.
56. Murasato Y, Horiuchi M, Otsuji Y. Threedimensional modeling of double-stent techniques at the left main coronary artery bifurcation using micro-focus X-ray computed tomography. Catheter Cardiovasc Interv 2007;70:211–20.
57. Murasato Y, Hikichi Y, Horiuchi M. Examination of stent deformation and gap formation after complex stenting of left main coronary artery bifurcations using microfocus computed tomography. J Interv Cardiol 2009;22:135–44.
58. Ormiston JA, Webster MW, Webber B, Stewart JT, Ruygrok PN, Hatrick RI. The “crush” technique for coronary artery bifurcation stenting: insights from micro-computed tomographic imaging of bench deployments. J Am Coll Cardiol Intv 2008;1:351–7.
59. Murasato Y, Hikichi Y, Nakamura S, et al. Recent perspective on coronary bifurcation intervention: statement of the “Bifurcation Club in KOKURA.” J Interv Cardiol 2010;23:295–304.
60. Richter Y, Groothuis A, Seifert P, Edelman ER. Dynamic flow alterations dictate leukocyte adhesion and response to endovascular interventions. J Clin Invest 2004;113:1607–14.
61. Katritsis DG, Siontis GC, Ioannidis JP. Double versus single stenting for coronary bifurcation lesions: a meta-analysis. Circ Cardiovasc Interv 2009;2:409–15.
62. Zimarino M, Corazzini A, Ricci F, Di Nicola M, De Caterina R. Late thrombosis after double versus single drug-eluting stent in the treatment of coronary
bifurcations: a meta-analysis of randomized and observational studies. J Am Coll Cardiol Intv 2013;6:687–95.
63. Mortier P, Van Loo D, De Beule M, et al. Comparison of drug-eluting stent cell size using micro-CT: important data for bifurcation stent selection. EuroIntervention 2008;4:391–6.
64. Ormiston JA, Webster MW, Ruygrok PN, Stewart JT, White HD, Scott DS. Stent deformation following simulated side-branch dilatation: a comparison of five stent designs. Catheter Cardiovasc Interv 1999;47:258–64.
65. Foin N, Torii R, Alegria E, et al. Location of side branch access critically affects results in bifurcation stenting: insights from bench modeling and computational flow simulation. Int J Cardiol 2013; 168:3623–8.
66. Alegra-Barrero E, Foin N, Chan PH, et al. Optical coherence tomography for guidance of distal cell recrossing in bifurcation stenting: choosing the right cell matters. EuroIntervention 2012;8: 205–13.
67. Murasato Y, Iwasaki K, Yamamoto T, et al. Optimal kissing balloon inflation after single-stent deployment in a coronary bifurcation model. EuroIntervention 2014;10:934–41.
68. Foin N, Secco GG, Ghilencea L, Krams R, Di Mario C. Final proximal post-dilatation is necessary after kissing balloon in bifurcation stenting. EuroIntervention 2011;7:597–604.
69. Foin N, Torii R, Mortier P, et al. Kissing balloon or sequential dilation of the side branch and main vessel for provisional stenting of bifurcations: lessons from micro-computed tomography and computational simulations. J Am Coll Cardiol Intv 2012;5:47–56.
70. Foin N, Alegria-Barrero E, Torii R, et al. Crush, culotte, T and protrusion: which 2-stent technique for treatment of true bifurcation lesions? Insights from in vitro experiments and micro-computed tomography. Circ J 2013;77:73–80.
71. Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D printing for the radiologist. Radio- Graphics 2015. In press.
72. Kralev S, Haag B, Spannenberger J, et al. Expansion of the Multi-Link Frontier coronary bifurcation stent: micro-computed tomographic assessment in human autopsy and porcine heart samples. PLoS One 2011;6:e21778.
73. Toutouzas K, Chatzizisis YS, Riga M, et al. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Atherosclerosis 2015;240:510–9.
74. Cardenes R, Diez JL, Larrabide I, Bogunovic H, Frangi AF. 3D modeling of coronary artery bifurcations from CTA and conventional coronary angiography. Med Image Comput Comput Assist Interv 2011;14:395–402.
75. Giannoglou GD, Chatzizisis YS, Sianos G, et al. Invivo validation of spatially correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane angiography. Coron Artery Dis 2006;17:533–43.
76. Tu S, Holm NR, Koning G, Huang Z, Reiber JH. Fusion of 3D QCA and IVUS/OCT. Int J Cardiovasc Imaging 2011;27:197–207.
77. Mortier P, Wentzel JJ, De Santis G, et al. Patient- specific computer modelling of coronary bifurcation stenting: the John Doe programme. EuroIntervention 2015;11 Suppl V:V35–9.
78. Antoniadis AP, Jaguszewski M, Maier W, Giannoglou GD, Luscher TF, Templin C. Geometrically correct three-dimensional optical coherence tomography: first self-expanding bifurcation stent evaluation. Eur Heart J 2013;34:2715.
79. Tu S, Pyxaras SA, Li Y, Barbato E, Reiber JH, Wijns W. In vivo flow simulation at coronary bifurcation reconstructed by fusion of 3-dimensional X-ray angiography and optical coherence tomography. Circ Cardiovasc Interv 2013;6:e15–7.
80. Karanasos A, Li Y, Tu S, et al. Is it safe to implant bioresorbable scaffolds in ostial sidebranch lesions? Impact of ’neo-carina’ formation on main-branch flow pattern. Longitudinal clinical observations. Atherosclerosis 2015;238:22–5.
81. Ramkumar PG, Mitsouras D, Feldman CL, Stone PH, Rybicki FJ. New advances in cardiac computed tomography. Curr Opin Cardiol 2009; 24:596–603.
82. Luo T, Wischgoll T. Kwon Koo B, Huo Y, Kassab GS. IVUS validation of patient coronary artery lumen area obtained from CT images. PLoS One 2014;9:e86949.

Chapter 4
1. Burzotta F, Trani C. In bifurcation PCI, as in everyday life, the consequences of kissing may not always be the same. EuroIntervention. 2016;11(11):e1209-13.
2. Ng AK, Jim MH. Percutaneous Coronary Intervention for Bifurcation: How Can We Outperform the Provisional Strategy? Clin Cardiol. 2016;39(11):684-91.
3. Lee JM, Park KW, Koo BK, Kim HS. Stenting of coronary bifurcation lesions: a literature and technical review. Curr Cardiol Rep. 2015;17(6):45.
4. Lassen JF, Holm NR, Banning A, Burzotta F, Lefevre T, Chieffo A, et al. Percutaneous coronary intervention for coronary bifurcation disease: 11th consensus document from the European Bifurcation Club. EuroIntervention. 2016;12(1):38-46.
5. Darremont O, Leymarie JL, Lefevre T, Albiero R, Mortier P, Louvard Y. Technical aspects of the provisional side branch stenting strategy. EuroIntervention. 2015;11 Suppl V:V86-90.
6. Lam MK, Sen H, van Houwelingen KG, Lowik MM, van der Heijden LC, Kok MM, et al. Three-year clinical outcome of patients with bifurcation treatment with second-generation Resolute and Xience V stents in the randomized TWENTE trial. Am Heart J. 2015;169(1):69-77.
7. Steigen TK, Maeng M, Wiseth R, Erglis A, Kumsars I, Narbute I, et al. Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the Nordic bifurcation study. Circulation. 2006;114(18):1955-61.
8. Lassen JF, Holm NR, Stankovic G, Lefevre T, Chieffo A, Hildick-Smith D, et al. Percutaneous coronary intervention for coronary bifurcation disease: consensus from the first 10 years of the European Bifurcation Club meetings. EuroIntervention. 2014;10(5):545-60.
9. Hildick-Smith D, de Belder AJ, Cooter N, Curzen NP, Clayton TC, Oldroyd KG, et al. Randomized trial of simple versus complex drug-eluting stenting for bifurcation lesions: the British Bifurcation Coronary Study: old, new, and evolving strategies. Circulation. 2010;121(10):1235-43.
10. Niemela M, Kervinen K, Erglis A, Holm NR, Maeng M, Christiansen EH, et al. Randomized comparison of final kissing balloon dilatation versus no final kissing balloon dilatation in patients with coronary bifurcation lesions treated with main vessel stenting: the Nordic-Baltic Bifurcation Study III. Circulation. 2011;123(1):79-86.
11. Gwon HC, Hahn JY, Koo BK, Song YB, Choi SH, Choi JH, et al. Final kissing ballooning and long-term clinical outcomes in coronary bifurcation lesions treated with 1-stent technique: results from the COBIS registry. Heart. 2012;98(3):225-31.
12. Korn HV, Yu J, Ohlow MA, Huegl B, Schulte W, Wagner A, et al. Interventional therapy of bifurcation lesions: a TIMI flow-guided concept to treat side branches in bifurcation lesions--a prospective randomized clinical study (Thueringer bifurcation study, THUEBIS study as pilot trial). Circ Cardiovasc Interv. 2009;2(6):535-42.
13. Paraggio L, Burzotta F, Aurigemma C, Trani C. Update on Provisional Technique for Bifurcation Interventions. Curr Cardiol Rep. 2016;18(3):27.
14. Mortier P, De Beule M, Dubini G, Hikichi Y, Murasato Y, Ormiston JA. Coronary bifurcation stenting: insights from in vitro and virtual bench testing. EuroIntervention. 2010;6 Suppl J:J53-60.
15. Gastaldi D, Morlacchi S, Nichetti R, Capelli C, Dubini G, Petrini L, et al. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech Model Mechanobiol. 2010;9(5):551-61.
16. Ormiston JA, Webster MW, Ruygrok PN, Stewart JT, White HD, Scott DS. Stent deformation following simulated side-branch dilatation: a comparison of five stent designs. Catheter Cardiovasc Interv. 1999;47(2):258-64.
17. Mortier P, De Beule M, Van Loo D, Verhegghe B, Verdonck P. Finite element analysis of side branch access during bifurcation stenting. Med Eng Phys. 2009;31(4):434-40.
18. Morlacchi S, Chiastra C, Gastaldi D, Pennati G, Dubini G, Migliavacca F. Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery. J Biomech Eng. 2011;133(12):121010.
19. Foin N, Torii R, Mortier P, De Beule M, Viceconte N, Chan PH, et al. Kissing balloon or sequential dilation of the side branch and main vessel for provisional stenting of bifurcations: lessons from micro-computed tomography and computational simulations. JACC Cardiovasc Interv. 2012;5(1):47-56.
20. Mortier P, Hikichi Y, Foin N, De Santis G, Segers P, Verhegghe B, et al. Provisional stenting of coronary bifurcations: insights into final kissing balloon post-dilation and stent design by computational modeling. JACC Cardiovasc Interv. 2014;7(3):325-33.
21. Finet G, Derimay F, Motreff P, Guerin P, Pilet P, Ohayon J, et al. Comparative Analysis of Sequential Proximal Optimizing Technique Versus Kissing Balloon Inflation Technique in Provisional Bifurcation Stenting: Fractal Coronary Bifurcation Bench Test. JACC Cardiovasc Interv. 2015;8(10):1308-17.
22. Liang X, Xenos M, Alemu Y, Rambhia SH, Lavi I, Kornowski R, et al. Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid-structure interaction studies. Coron Artery Dis. 2013;24(2):75-87.
23. Liu X, Wu G, Xu C, He Y, Shu L, Liu Y, et al. Prediction of coronary plaque progression using biomechanical factors and vascular characteristics based on computed tomography angiography. Comput Assist Surg (Abingdon). 2017;22(sup1):286-94.
24. Putra NK, Palar PS, Anzai H, Shimoyama K, Ohta M. In search for a better stent: Surrogate based multi-objective optimization of stent design under influence of vessel wall deformation. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:1344-7.
25. Chen HY, Hermiller J, Sinha AK, Sturek M, Zhu L, Kassab GS. Effects of stent sizing on endothelial and vessel wall stress: potential mechanisms for in-stent restenosis. J Appl Physiol (1985). 2009;106(5):1686-91.
26. Chen HY, Sinha AK, Choy JS, Zheng H, Sturek M, Bigelow B, et al. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress. Am J Physiol Heart Circ Physiol. 2011;301(6):H2254-63.
27. Medrano-Gracia P, Ormiston J, Webster M, Beier S, Young A, Ellis C, et al. A computational atlas of normal coronary artery anatomy. EuroIntervention. 2016;12(7):845-54.
28. Gervaso F, Capelli C, Petrini L, Lattanzio S, Di Virgilio L, Migliavacca F. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J Biomech. 2008;41(6):1206-12.
29. Choudhari P, Panse MS. Finite Element Modeling and Simulation of Arteries in the Human Arm to Study the Aortic Pulse Wave Propagation. Procedia Computer Science. 2016;93:721-7.
30. Azaouzi M, Makradi A, Petit J, Belouettar S, Polit O. On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Computational Materials Science. 2013;79:326-35.
31. Lassen JF, Burzotta F, Banning AP, Lefevre T, Darremont O, Hildick-Smith D, et al. Percutaneous coronary intervention for the left main stem and other bifurcation lesions: 12th consensus document from the European Bifurcation Club. EuroIntervention. 2018;13(13):1540-53.
32. Antoniadis AP, Mortier P, Kassab G, Dubini G, Foin N, Murasato Y, et al. Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting: Expert Review Document on Techniques and Clinical Implementation. JACC Cardiovasc Interv. 2015;8(10):1281-96.
33. Chen HY, Koo BK, Bhatt DL, Kassab GS. Impact of stent mis-sizing and mis-positioning on coronary fluid wall shear and intramural stress. J Appl Physiol (1985). 2013;115(2):285-92.
34. Stankovic G, Darremont O, Ferenc M, Hildick-Smith D, Louvard Y, Albiero R, et al. Percutaneous coronary intervention for bifurcation lesions: 2008 consensus document from the fourth meeting of the European Bifurcation Club. EuroIntervention. 2009;5(1):39-49.
35. Migliavacca F, Gervaso F, Prosi M, Zunino P, Minisini S, Formaggia L, et al. Expansion and drug elution model of a coronary stent. Comput Methods Biomech Biomed Engin. 2007;10(1):63-73.
36. Burzotta F, Mortier P, Trani C. Characteristics of drug-eluting stent platforms potentially influencing bifurcated lesion provisional stenting procedure. EuroIntervention. 2014;10(1):124-32.
37. Takagi K, Fujino Y, Naganuma T, Watanabe Y, Yabushita H, Mitomo S, et al. Impact of a combination of full coverage stenting and proximal optimization technique on long term outcome for unprotected distal left main disease. Cardiovasc Revasc Med. 2016;17(8):515-21.
38. Koo BK, Kang HJ, Youn TJ, Chae IH, Choi DJ, Kim HS, et al. Physiologic assessment of jailed side branch lesions using fractional flow reserve. J Am Coll Cardiol. 2005;46(4):633-7.
39. Lefevre T, Girasis C, Lassen JF. Differences between the left main and other bifurcations. EuroIntervention. 2015;11 Suppl V:V106-10.
40. Girasis C, Farooq V, Diletti R, Muramatsu T, Bourantas CV, Onuma Y, et al. Impact of 3-dimensional bifurcation angle on 5-year outcome of patients after percutaneous coronary intervention for left main coronary artery disease: a substudy of the SYNTAX trial (synergy between percutaneous coronary intervention with taxus and cardiac surgery). JACC Cardiovasc Interv. 2013;6(12):1250-60.
41. Amemiya K, Domei T, Iwabuchi M, Shirai S, Ando K, Goya M, et al. Impact of the bifurcation angle on major cardiac events after cross-over single stent strategy in unprotected left main bifurcation lesions: 3-dimensional quantitative coronary angiographic analysis. Am J Cardiovasc Dis. 2014;4(4):168-76.
42. Ielasi A, Takagi K, Latib A, Basavarajaiah S, Figini F, Carlino M, et al. Long-term clinical outcomes following drug-eluting stent implantation for unprotected distal trifurcation left main disease: the Milan-New Tokyo (MITO) registry. Catheter Cardiovasc Interv. 2014;83(4):530-8.
43. Kubo S, Kadota K, Sabbah M, Otsuru S, Hasegawa D, Habara S, et al. Clinical and angiographic outcomes after drug-eluting stent implantation with triple-kissing-balloon technique for left main trifurcation lesion: comparison of single-stent and multi-stent procedures. J Invasive Cardiol. 2014;26(11):571-8.
44. Wang Q, Kodali S, Primiano C, Sun W. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech Model Mechanobiol. 2015;14(1):29-38.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw