進階搜尋


 
系統識別號 U0026-0802201716093800
論文名稱(中文) 先進封裝製程中晶粒偏移原因診斷與改善對策
論文名稱(英文) Die-shift failure analysis and alleviation strategy for wafer reconstitution process of advanced packaging technology
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 1
出版年 106
研究生(中文) 柳昱丞
研究生(英文) Yu-Cheng Liu
電子信箱 orange0527@hotmail.com
學號 N16044098
學位類別 碩士
語文別 中文
論文頁數 112頁
口試委員 指導教授-楊天祥
共同指導教授-陳國聲
口試委員-屈子正
口試委員-王耀塵
口試委員-胡逸群
中文關鍵字 晶粒偏移  晶圓翹曲  模流因素  固力因素  機械性質  有限元素法 
英文關鍵字 wafer reconstitution  die shift  mold flow  thermal expansion 
學科別分類
中文摘要 晶圓重組 (reconstitution) 必須經歷一系列壓模、後熟化、卸除載盤等製程,其中壓模速度、壓力、溫度以及時間等參數設定,對製程良率維持而言是極為關鍵的因素。若未能妥善地設定這些參數,將可能造成重組後晶圓在外觀上明顯可見的缺陷,如晶圓翹曲 (wafer warpage) 以及晶粒偏移 (die shift) 等直接降低製程良率的現象。
所謂晶粒偏移是由製程中的模流因素負載和各材料間熱膨脹係數 (coefficient of thermal expansion;CTE) 差異所致之熱應力,與封膠固化收縮時所產生之殘留應力,以及長時間處於高溫時封膠所產生之黏彈效應等固力因素交互作用所致,而本論文主要評估這些模流因素與固力因素對製程所造成的缺陷。論文中我們利用簡化之流體力學與固體力學有限元素模型,同時透過實驗來量測底膠黏著力與封裝材料機械性質(包括楊氏模數及黏彈性行為參數等),做為分析模型中的材料參數,來計算並探討造成晶粒偏移原因及數量級評估。計算結果中所顯示可能產生之晶粒偏移趨勢大致與製程現場之觀察一致,在經過對晶圓重組製程進行有系統的參數研究與實驗驗證分析後,我們也試著提出對於晶粒偏移之改善方案,以期降低前述各項缺陷在產線上實際發生之機率,進而達成改善製程良率之重要終極目的。
英文摘要 In advanced packaging technologies, there are many important parameters in the wafer reconstitution process, such as molding velocity, pressure, temperature and duration of each process. Without proper tuning of these parameters, some serious defects typically appear after wafer reconstitution, such as die shift and wafer warpage. These defects clearly may decrease the yield. In this thesis, we utilize simplified fluid dynamics model and FEM analysis to determine the main cause of die shift. And it turns out that die shift is mainly caused by the interaction of fluid force loading, material thermal expansion, shrinkage of molding compound and viscoelastic effect. In the meantime, we also set up experiments to measure material properties, such as the elastic moduli of the compound and the tape, under different temperatures, tape adhesive strength, viscoelastic effect parameters, etc. After we finish these measurements, we then input these material parameters into the FEM software ABAQUS to simulate the real process conditions, and carry out a full analysis of wafer reconstitution process. Finally, the simulation results of ABAQUS show that the tendency and magnitude of die shift and warpage are similar to the results observed in real process. With this successful simulation, we can then analyze the effectiveness of some alleviation strategies for reducing the occurrence of defects after the wafer reconstitution process.
論文目次 中英文摘要 I
致謝 IX
目錄 X
圖目錄 XIV
表目錄 XIX
符號說明 XX
1. 緒論 1
1.1 前言 1
1.2 研究動機 4
1.3文獻回顧 6
1.4研究架構論述 11
1.5 本文架構 13
2. 製程介紹 14
2.1晶圓重組製程 15
2.2 製程中之影響因素 17
2.2.1模流因素 17
2.2.2固體力學因素 18
2.3本章總結 20
3. 模流分析 21
3.1 理論基礎 21
3.2 製程中的流體力學模型 25
3.2.1 製程參數簡化 25
3.2.2 解析解推導 27
3.3 結果與討論 35
3.3.1 壓力場與流體負載 35
3.3.2 晶粒偏移計算 38
3.4本章結論 41
4. 材料檢測系統設計與儀器介紹 42
4.1 前言 42
4.2 主系統設計 43
4.3儀器介紹與校正 45
4.3.1 力規介紹與校正 45
4.3.2 位移感測器介紹與校正 48
4.3.3 加熱環境介紹與測試 50
4.3.4 資料擷取 55
5. 材料機械性質量測 57
5.1 懸臂樑方法量測封膠楊氏模數 57
5.1.1. 懸臂樑法介紹 57
5.1.2 實驗流程 59
5.1.3 實驗結果 61
5.2 拉伸試驗量測楊氏模數 63
5.2.1 拉伸試驗法介紹 63
5.2.2 實驗流程 65
5.2.3 實驗結果 67
5.3 黏彈性質量測 70
5.3.1 量測原理 70
5.3.2 實驗流程 72
5.3.3 實驗結果 73
5.4 底膠之介面黏性強度測試 78
5.4.1 量測原理 78
5.4.2 實驗流程 80
5.4.3 實驗結果 81
5.5 本章結論 84
6. 有限元素法分析 85
6.1 模流分析 85
6.1.1 模型介紹 85
6.1.2 模擬結果 86
6.2 固力因素分析 90
6.2.1 模型建立 90
6.2.2 後熟化製程 91
6.2.3 卸除載盤製程 94
6.2.4. 研磨及退火製程 95
6.2.5 製程後結構與缺陷討論 96
6.3 本章結論 101
7. 結論與未來工作 102
7.1 結論 102
7.1.1模流因素歸納 102
7.1.2固力因素歸納 103
7.2 晶粒偏移改善對策 104
7.3 本文貢獻 105
7.4 未來工作 106
參考文獻 107
附錄 本論文中使用之製程參數表 111
參考文獻 [1] 鍾文仁,IC封裝製程與CAE應用,全華圖書,2010.
[2] Y. C. Wang, S. H. Lee, “ASE meeting materials”, ASE Manufacturing Facilities, confidential command cautions, 2016.
[3] C. H. Khong, “A Novel Method to Predict Die Shift During Compression Molding in Embedded Wafer Level Package”, Electronic Components and Technology Conference, pp.535-541, 2009.
[4] L. Bu, S. Ho, S. D. Velez, T. Chai, X. Zhang, “Investigation on Die Shift Issues in the 12-in Wafer-Level Compression Molding Process”, IEEE transactions on components, packaging and manufacturing technology, vol. 3, no. 10, pp.1647-1653, October 2013.
[5] H. S. Ling, B. Lin, Ch. S. Choong, Ch. T. Chong, “Comprehensive Study on the Interactions of Multiple Die Shift Mechanisms During Wafer Level Molding of Multichip-Embedded Wafer Level Packages”, IEEE transactions on components, packaging and manufacturing technology, vol. 4, no. 6, pp.1090-1098, June 2014.
[6] J. Mazuir, V. Olmeta, M. Yin, G. Pares, A. Planchais, K. Inal, M. Saadaoui, “Evaluation and Optimization of Die-Shift in Embedded Wafer-Level Packaging by Enhancing the Adhesion Strength of Silicon Chips to Carrier Wafer”, 13th Electronics Packaging Technology Conference, France, pp. 747-751, 2011.
[7] D. V. Sorono, J. Lin, C. T. Chong, S. C. Chong, S. R. Vempati, “Study on Mold Flow During Compression Molding for Embedded Wafer Level Package (EMWLP) with Multiple Chips”, IEEE 14th Electronics Packaging Technology Conference, pp. 336-341, 2012.
[8] G. Sharma, A. Kumar, V. S. Rao, S. W. Ho, V. Kripesh, “Solutions Strategies for Die Shift Problem in Wafer Level Compression Molding”, IEEE transactions on components, packaging and manufacturing technology, vol. 1, no. 4, pp. 502-509, 2011.
[9] S. C. Chong, C. H. Khong, K. L. C. Sing, D. H. S. Wee, C. T. W. Liang, “Process Challenges and Development of eWLP”, 12th Electronics Packaging Technology Conference, pp. 527-531, 2010.
[10] A. Kumar, X. Dingwei, V. N. Sekhar, S. Lim, C. Keng, G. Sharma, V. S. Rao, V. Kripesh, John H. Lau, D.-L. Kwong, “Wafer Level Embedding Technology for 3D Wafer Level Embedded Package”, Electronic Components and Technology Conference, pp.1289-1296, 2009.
[11] M. R. Kamal, M. E. Ryan, “The Behavior of Thermosetting Compounds in Injection Molding Cavities”, Polymer Engineering and Science, vol. 20, no. 13, pp. 859-867, 1980.
[12] D. G. Yang, K. M. B. Jansen, L.J. Ernst, G.Q. Zhang, W.D. van Drief, H.J.L. Bressers, “Modeling of Cure-Induced Warpage of Plastic IC Packages”, 5th. Int. Conf. on Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems, pp. 32-40, 2004.
[13] R. R. Hill, Jr. Shailesh, V. Muzumdar, L. J. Lee, “Analysis of Volumetric Changes of Unsaturated Polyester Resins During Curing”, Polymer Engineering and Science, vol. 35, no. 10, pp. 852-859, May 1995.
[14] Y. Simo, J. Park, H.-J. Lee. "Compensation Method for Die Shift Caused by Flow Drag Force in Wafer-Level Molding Process", Micromachines, vol. 7, no.95, pp.1-12, 2016.
[15] C. C. Lee, C. L. Tucker, “Flow and Heat Transfer in Compression Mold Filling”, J Non-Newtonian Fluid Mechanics, vol. 24, pp. 245–264, 1986.
[16] S.F. Shuler, S.G. Advani, “Transverse Squeeze Flow of Concentrated Aligned Fibers in Viscous Fluids”, J Non-Newtonian Fluid Mechanics, pp. 47–74, 1996.
[17] C. Ghnatios, F. Chinesta, C. Binetruy, “3D Modeling of Squeeze Flows Occurring in Composite Laminates”, Int. J. Mater. Form, pp. 1–11, 2013.
[18] 許瑞峰,微小材料機械特性測試系統之設計製作與其在電子封裝與高分子材料上之應用,國立成功大學機械系碩士論文,民國92年。
[19] R. C. Hibbeler, “Mechanics of Materials”, 8 edition, pp.808-809, 2010.
[20] Smith, Hashemi, “材料科學概論”,第五版,東華書局,2013年。
[21] H. F. Brinson and L. C. Brinson, “Polymer Engineering Science and Viscoelasticity An Introudction”, Springer Science Business Media, 2008.
[22] Simula, “Time domain viscoelasticity”, ABAQUS Standard 6.10 edition user’s manual, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-02-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-02-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw