進階搜尋


下載電子全文  
系統識別號 U0026-0802201702122200
論文名稱(中文) 靜電紡絲製備複合性奈米碳纖維應用於超級電容
論文名稱(英文) Carbon Nanofibers Derived from Electrospinning and Their Composites for Supercapacitor Applications
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 105
學期 1
出版年 106
研究生(中文) 張惟閔
研究生(英文) Wei-Min Chang
學號 N38991156
學位類別 博士
語文別 中文
論文頁數 116頁
口試委員 指導教授-陳志勇
召集委員-芮祥鵬
口試委員-李貴琪
口試委員-王振乾
口試委員-林睿哲
口試委員-許梅娟
口試委員-侯聖澍
中文關鍵字 超級電容器  電漿  奈米碳管  奈米碳纖維  聚苯胺  離心靜電紡絲  超細奈米碳纖維 
英文關鍵字 Supercapacitor  Plasma  Carbon nanotube  Carbon nanofiber  Polyaniline  Ultr-thin  Centrifuged-electrospinning 
學科別分類
中文摘要 本研究利用電漿改質奈米碳管接枝馬來酸酐(CNT-MA)添加於靜電紡絲奈米纖維中,並經由800 ºC的碳化程序製備奈米碳纖維,製備出導電性良好的奈米碳纖維,並應用於超級電容之製備。電漿改質CNT-MA的接枝量經由Fourier transform infrared spectroscopy (FTIR)和X-ray photoelectron spectroscopy(XPS)分析結果顯示,CNT-MA中的馬來酸酐含量為16.2%。添加CNT-MA進行電紡及燒結所得的複合奈米碳纖維型態、表面元素組成及電化學性質則分別使用電子顯微鏡(SEM,TEM)、XPS和電化學交流阻抗分析。結果顯示,CNT-MA可良好的分散於奈米碳纖維內,除增加其導電度外,也可改變表面的氮元素組成來增加電容量。當CNT-MA添加量為1.0 wt.%時,可得到最高382 F/g電容量的奈米碳纖維,其導電度為2.2 s/cm,在定電流充放電、循環伏安及電化學交流阻抗的實驗中皆顯示有最好的電化學性質。當CNT-MA添加量增加至2.5 wt.%時,奈米碳纖維雖有最高的導電度5.2 s/cm及高達70.3%的pyridinic和pyrrolic官能基含量;然而因為漏電流的發生,無法達到較高的電容量。
另一方面,將此高導電性CNT-MA(1.0 wt.%)複合奈米碳纖維進行電漿改質後,將聚苯胺以化學鍵結接枝於表面(PANi-P-1.0)。經由Raman、XPS、SEM及TEM確認聚苯胺是以emeraldine base結構和奈米柱的型態均勻接枝於奈米纖維表面。進一步經由電化學測試結果顯示,複合奈米碳纖維的高電容量(606 F/g)是由高導電度的奈米碳纖維形成電雙層及聚苯胺的擬電容結合而得。若將PANi-P-1.0與聚苯胺是以物理性包覆奈米碳纖維進行電化學性質比較時可發現,前者界面因有化學鍵結使其阻抗降低,無論是電子傳遞阻抗(Rct)還是離子擴散阻抗(Warburg coefficient)皆分別由13.54 Ω下降至3.87 Ω及101.39 Ωs-1/2下降至47.96 Ωs-1/2,而relaxation time constant 由0.794 s下降至0.194 s。定電流循環充放電結果亦顯示,PANi-P-1.0於作用1,000圈後,依然保有100%的電容量,此為聚苯胺有足夠的空間進行體積改變,並且因為共價鍵的關係不易從奈米碳纖維表面脫落而增加其使用壽命。
進一步地為了取得可於快速充放電下操作的超級電容器,本研究導入新式離心靜電紡絲製備polyacrylonitrile (PAN)/polymethyl methacrylate (PMMA)複合性高分子奈米纖維,再經由800 ºC去除PMMA相,使其碳化為直徑只有28±11 nm的超細奈米碳纖維。以SEM可以觀察到新式離心靜電紡絲可以提供額外的強力離心力,於紡絲過程中將分散於PMMA連續相中的PAN液滴延伸為超細奈米纖維結構。此特殊的結構相較於傳統靜電紡絲所製備的奈米碳纖維(126±16 nm)展現出更好的電化學性質。交流阻抗分析結果顯示,縮短奈米碳纖維的直徑可以增加外比表面積及縮短離子擴散至孔洞的距離,因而降低電子傳遞、分佈阻抗及離子擴散阻抗。可於1A/g的充放電速度下,取得243 F/g的電容量;於100 A/g的高充放電速度下,仍可保留77.1%的電容量。此結果明顯高於傳統靜電紡絲奈米碳纖維(130 F/g, 1 A/g;7.7%, 100 A/g),為一種具商業化競爭力的超級電容。
英文摘要 Plasma-treatment carbon nanotubes (CNT) grafted with maleic anhydride (MA) were embedded in polyacryonitrile nanofibers via electrospinning and subsequently carbonizated at 800 ºC to fabricate carbon nanofibers (CNF). The grafted degree of MA on CNT (CNT-MA) was determined via Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphology, surface composition and conductivity of the CNT-MA/CNF were characterized using electron microscopy, X-ray photoelectron and electrochemical impedance spectroscopy, respectively. CNT-MA not only affected the conductivity of the CNFs but also the types of the nitrogen functional groups that could be represented as active sites on the CNF to enhance the performance of the supercapacitors. When 2.5 wt.% CNT-MA was embedded in the CNFs, the highest conductivity was obtained at 5.2 s/cm, and the amount of pyridinic and pyrrolic species increased to 70.3%. However, the highest capacitance was not obtained with 2.5 wt.% CNT-MA added because of current leakage present in the system. The highest capacitance was 382 F/g with 1.0 wt.% CNT-MA embedded in CNF with proper conductivity of 2.2 s/cm. Furthermore, galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy measurements also demonstrated that 1.0 wt.% CNT-MA embedded in CNF resulted in better electrochemical reversibility and impendence properties.
This high conductivity CNT-MA(1.0 wt.%)/CNF structure further grafted polyaniline by plasma and confirmed by Raman, X-ray photoelectron spectroscopy, electron microscopy and transmission electron microscopy. The emeraldine base form of nanorod-polyaniline is well-distributed on the surface of the CNF. The PANi-P-1.0 has a high specific capacitance of 606 Fg-1. From the result of the electrochemical properties, the high capacitance is contributed by the electric double layer capacitance of the high conductivity CNF and the pseudocapacitance of the grafting polyaniline. In addition, compared to polyaniline coated on the surface of the CNF, the electrochemical properties of the PANi-P-1.0 are improved by reducing the charge transfer resistance (Rct) from 13.54 to 3.87 Ω, the Warburg coefficient from 101.39 to 47.96 Ωs-1/2 and the relaxation time constant from 0.794 to 0.194 s due to the covalent bond between the polyaniline and CNF. The PANi-P-1.0 also show excellent cycling stability after 1,000 cycles of galvanostatic charge and discharge because the free space around the grafting polyaniline allows volumetric change.
For the supercapacitor at high-rate operating, the novel technique of centrifuged-electrospinning is employed to fabricate immiscible polyacrylonitrile (PAN)/polymethyl methacrylate (PMMA) polymer fibers, followed by carbonization to form ultra-thin carbon nanofibers (UT-CNF) with 28±11 nm diameters. An additional centrifugal force provides a strong stretching force to stretch the dispersed droplets (PAN) into ultra-thin nanofibers, as confirmed by electron microscopy. This structure presents good electrochemical properties compared to electrospun carbon nanofibers with 126±16 nm diameters. Electrochemical impedance spectroscopy analysis shows enhanced efficient surface areas, which accumulate ions more quickly, resulting in a decrease in the charge distribution and ion diffusion resistance because the reduction in diameter provides a short pore length and large outer surface. Applied to a supercapacitor, galvanostatic charge/discharge analysis gives a maximum specific capacitance of 243 F/g at 1 A/g and capacitance retention of 77.1% at a charge/discharge rate of 100 A/g for UT-CNF. This result is significantly higher than that of traditional electrospun carbon nanofibers(130 F/g at 1 A/g;7.7% at 100 A/g).
論文目次 總目錄
摘要 II
ABSTRACT IV
誌謝 XXVII
總目錄 XXIX
表目錄 XXXII
圖目錄 XXXIV
第一章、 緒論 1
第二章、 文獻回顧 5
2.1超級電容器 5
2.1.1電雙層(Electrical Double-Layer capacitors, EDLC) 6
2.1.2奈米碳纖維 9
2.1.3擬電容(Pseudo-Capacitance) 16
2.2 靜電紡絲技術 19
第三章、 材料與實驗方法 29
3-1實驗藥品 29
3-2 實驗儀器設備 30
3-2-1 分析儀器 30
3-2-2第二代離心靜電紡絲設備 31
3-2-3專利電漿改質設備 32
3-3 實驗步驟 33
3-3-1 聚丙烯晴合成 33
3-3-2 電紡絲溶液配置 34
3-3-3 高分子奈米纖維製備 34
3-3-4 奈米碳纖維製備 34
3-3-5 電漿改質奈米碳管複合奈米碳纖維接枝聚苯胺 36
3-3-6 以化學合成法製備聚苯胺包覆於奈米碳管複合奈米碳纖維 37
3-3-7 超級電容器組裝 37
3-4 分析方法 38
第四章、 結果與討論 41
4-1 電漿改質奈米碳管接枝馬來酸酐之鑑定與分析 41
4-2 CNTS-MA/CNF複合材料之特性分析 43
4-3 CNTS-MA/CNF複合材料之電化學分析 53
4-4 電漿改質CNTS-MA/CNF接枝聚苯胺之鑑定與分析 61
4-5 電漿接枝PANI於CNTS-MA/CNF之電化學分析 68
4-6 超細CNF之鑑定與分析 77
4-7 超細CNF之電化學分析 86
第五章、 結論 92
參考文獻 95
附錄一 106
論文著作 116

表目錄
表2-1、儲能裝置特徵比較表 5
表2-2、各類碳材特性的比較 11
表2-3、整理製備高表面積及多孔性靜電紡絲奈米碳纖維之方法 14
表2-4、聚苯胺複合碳材料應用於超級電容器之比較 18
表4-1、Surface compositions of the pristine CNTs and CNTs-MA measured by XPS. 42
表4-2、Surface compositions of the different CNTs-MA content within CNF measured by XPS. 49
表4-3、Curve fitting result of N1s with different concentration of the CNTs-MA embedded in CNF. 53
表4-4、The specific capacitance at variation charge and discharge current density and the capacitance at 1A/g charge and discharge current density after 1,000 cycle with different concentration of the CNTs-MA embedded in CNF 54
表4-5、Nyquist Plot Analysis of Rs, Rct and ESR for different concentration of the CNTs-MA embedded in CNF. 60
表4-6、Curve fitting results of N1s for the CNF, CNT-MA/CNF, PANi-P-1.0 and PANi-S-1.0 samples. 68
表4-7、The values of Rs, Rct, Warburg coefficient, relaxation time (τ) and Phase angle for the CNF, CNT-MA/CNF, PANi-P-1.0 and PANi-S-1.0 samples. 74
表4-8、The specific capacitance at variation charge and discharge current density and the capacitance at 1 Ag-1 charge and discharge current density after 1,000 cycle with different concentration of the CNF, CNT-MA/CNF, PANi-P-1.0 and PANi-S-1.0 sample. 76
表4-9、Specific surface area and pore size distribution of carbon nanofibers 85
表4-10、The values of Rs, Rct, Warburg coefficient(σ), ESR and Phase angle for the CNF, NC-CNF, and UT-CNF samples 88
表5-1、本研究樣品之電容量、能量密度及功率密度整理表 93
附表1、Summary of Electrospinning method used for Fabrication of piezoelectric PVDF nanofibers. 108
附表2、DSC data of heat of fusion, crystallinity and melting temperature for all samples (totally crystalline PVDF, ΔH0 = 104.50 J/g) 113

圖目錄
圖1-1、超級電容器之基本電雙層(EDLC)機制 3
圖2-1、超級電容器分類 7
圖2-2、(a) Helmholz,(b) Gouy and Chapman,(c)Stern電雙層理論於正極 7
圖2-3、孔洞大小示意圖[50] 15
圖2-4、聚苯胺的三種氧化態(a)完全還原態Leucoemeraldine (LIB);(b)完全氧化態Pernigraniline base (PNB);(c)半氧化/半還原態Emeraldine base (EB) 17
圖2-5、靜電紡絲文獻發表統計 19
圖2-6、Schematic diagram of various electrospinning set-ups for multiple spinnerets and to obtain various fibrous assemblies: (a) rotating wire drum collector[ 23
圖2-7、量產式靜電紡絲設備(a) multi-jet electrospinning[78] (b) porous polyethylene tube[79] (c) NanospiderTM[80] (d) rotary cone electrospinning[82] (e) bubble spinning[83] (f) Rotary Jet-Spinning[84] 24
圖2-8、第一代離心靜電紡絲設備 26
圖2-9、離心靜電紡絲高分子溶液之射流行為包括curvature radius (by Re and We numbers), jet length (by Pe and e numbers), and Taylor cone (by P1 and Oh numbers) 27
圖2-10、超細奈米碳纖維製備流程 28
圖3-1、第二代離心靜電紡絲設備 32
圖3-2、電漿反應器示意圖 33
圖3-3、多壁碳管電漿接枝順丁烯二酸酐示意圖 33
圖3-4、PAN進行穩定化反應流程 35
圖3-5、PAN進行碳化反應流程 35
圖3-6、電漿改質奈米碳纖維接枝聚苯胺 36
圖3-7、超級電容器組裝 37
圖3-8、Wilhelmy plate method 38
圖4-1、FTIR spectra of the pristine CNTs、the MA grafted CNTs (CNTs-MA)、the MA mixing with CNTs(CNTs/MA) and pristine MA. 42
圖4-2、(a) TEM image of dispersion of 1.0 wt.% CNT-MA in the polymer matrix and (b) SEM image of electrospun 1.0 wt.% CNT-MA embedded polymer nanofiber 43
圖4-3、SEM images of (a) 0.0, (b) 0.1, (c)0.5, (d)1.0, (e)2.0, (f)2.5 wt.% CNTs-MA embedded in CNF 45
圖4-4、TEM images of 2.5 wt.% CNTs-MA embedded in the CNFs (a)x50K, (b)x200K, (c) high-resolution., (d) STEM image, (e) EDS mapping of carbon, and (f) EDS quantitative-map of nitrogen. 46
圖4-5、Raman spectra and R-value (Insert graph) with variation concentration of CNTs-MA embedded in CNF. 47
圖4-6、The relation of conductivity with different concentration of the CNTs-MA embedded in CNF. 48
圖4-7、TGA curve of 0.0, 0.5, 1.0 and 2.5 wt.% CNTs-MA embedded in CNF. Heating to 800 °C under N2 purging. 50
圖4-8、High-resolution N1s XPS spectra of (a) 0.0, (b) 0.1, (c)0.5, (d)1.0, (e)2.0, (f)2.5 wt.% CNTs-MA embedded in CNF 52
圖4-9、Illustration of the CNTs-MA affect N functional group formation on carbonization of PAN 53
圖4-10、Illustration of the conductivity and activity site of the CNTs-MA effects on energy storage process.(a) low conductivity of CNF results in low electron density and low utilization of activity site, (b) improved the conductivity of CNF results in high electron density and efficiently utilize the activity site, (c) higher conductivity induces the leakage current. 55
圖4-11、Galvanostatic charge/discharge spectra of (a) 0.0, (b) 0.1, (c)0.5, (d)1.0, (e)2.0, (f)2.5 wt.% CNTs-MA embedded in CNF with variation current density. 56
圖4-12、Cyclic voltammetry spectra of (a) 0.0, (b) 0.1, (c)0.5, (d)1.0, (e)2.0, (f)2.5 wt.% CNTs-MA embedded in CNF at different potential sweep rate from -1 V to 1 V. 58
圖4-13、Electrochemical impedance spectroscopy of various the CNTs-MA embedded in CNF. Insert graph is high frequency region. 60
圖4-14、Raman spectra with the CNF, CNT-MA/CNF, PANi-P-1.0 and PANi-S-1.0 samples. 62
圖4-15、SEM images of (a) CNF, (b) high magnification of CNF, (c) CNT-MA/CNF, (d) high magnification of CNT-MA/CNF, (e) PANi-P-1.0, (f) high magnification of PANi-P-1.0, (g) PANi-S-1.0 and (h) high magnification of PANi-S-1.0 64
圖4-16、TEM images of the (a) CNT-MA/CNF, (b) CNT-MA/CNF with higher resolution, (c) PANi-P-1.0 and (d) PANi-P-1.0 with high-resolution. 65
圖4-17、TGA curve of PANi, CNT-MA/CNF, PANi-P-1.0 and PANi-S-1.0 samples at a heating rate of 10 °C min−1 under a N2 atmosphere. 66
圖4-18、High-resolution N1s XPS spectra of the (a)CNF, (b)CNT-MA/CNF, (c)PANi-P-1.0 and (d)PANi-S-1.0 68
圖4-19、Cyclic voltammetry spectra of (a) two electrode cell of comparison of the CNF, CNT-MA/CNF, PANi-P-1.0 and PANi-S-1.0 at 10 mVs-1 rate from -1.0 V to 1.0 V and (b) three electrode cell of PANi-P-1.0 at different potential sweep rate from -0.25 V to 0.80 V. 69
圖4-20、(a) Nyquist plot, insert graph is high frequency region, (b) Randles plot, (c) Bode phase, (d) Bode plot of the CNF, CNT-MA/CNF, PANi-P-1.0 and PANi-S-1.0 samples, (e) Equivalent circuit of the PANi-P-1.0 and (f) PANi-S-1.0 73
圖4-22、FTIR spectra of PMMA, PAN, as spun polymer nanofiber and PAN/PMMA polymer nanofiber etched by THF. 79
圖4-23、TGA curves of PMMA, PAN and as spun polymer nanofiber in a N2 atmosphere. 79
圖4-24、(a) Photograph of blended polymer fiber mat produced by Centrifuged-Electrospinning. SEM images of (b) PAN80/PMMA20 and (c) PAN10/PMMA90. SEM images of blended polymer fiber etched by THF from (d) PAN80/PMMA20(the insert was cross section view) and (e) PAN10/PMMA90. SEM images of carbon nanofiber from (f) PAN80/PMMA20(NC-CNF), (g) PAN10/PMMA90 (UT-CNF), (h) magnified SEM image of UT-CNF and (i) PANNF(CNF) produced by traditional electrospinning. 81
圖4-25、TEM images of carbon nanofibers of (a) NC-CNF, (b) UT-CNF and (c) high-resolution of UT-CNF. 82
圖4-26、Raman spectra and R-value of CNF, NC-CNF and UT-CNF. 83
圖4-27、(a) Nyquist plot, insert graph is high frequency region, (b) Randles plot and (c) Bode phase of carbon nanofibers. 88
圖4-28、Cyclic voltammetry spectra of (a) CNF, (b) NC-CNF and (c) UT-CNF at 10, 20, 50 and 100 mV/s in a 1.0 M H2SO4 solution as the electrolyte 89
圖4-29、Galvanostatic charge/discharge spectra of the (a) CNF, (b) NC-CNF, (c) UT-CNF and (d) capacitance with various charge/discharge current density. 91
附圖1、PVDF (a) molecular formula (b) molecular conformation -α phase without piezoelectricity and β phase with piezoelectricity. 107
附圖2、PVDF (a) β phase conformation in chain structure (b) semi-crystalline structure [114] 107
附圖3、(a) PVDF nanofibers by traditional electrospinning (T-PVDF) (b) PVDF nanofibers by Centrifuged-Electrospinning (CE-PVDF) (c) PVDF nanofibers with silver nanoparticles(CE-PVDF-Ag) 111
附圖4、FTIR spectra of (a) PVDF film (b) T-PVDF (c) CE-PVDF (d) CE-PVDF-Ag 112
附圖5、Voltage output of CE-PVDF-Ag (a) Impact action (b) repeated compressive impacts (c) hold stretch for one second and (d) Voltage output of CE-PVDF-Ag、CE-PVDF and T-PVDF. 114
附圖6、PVDF as electrical generator (a)connect to bridge rectifier (b) and charging a capacitor (30mins) to light up a blue LED (c) charging a 10 μF capacitor (60mins) to light up a LED 6 seconds (with 200kΩ resistance). 115
參考文獻 [1] 2015-2020年中国超级电容器市场调查及
发展预测报告, (2016).
[2] T.M. Research, Supercapacitor Market - Global Industry Analysis, Trend, Size, Share and Forecast 2015 - 2023, 2016.
[3] C. Kim, K.S. Yang, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Applied Physics Letters 83(6) (2003) 1216.
[4] C. Kim, J.-S. Kim, S.-J. Kim, W.-J. Lee, K.-S. Yang, Supercapacitors Prepared from Carbon Nanofibers Electrospun from Polybenzimidazol, Journal of The Electrochemical Society 151(5) (2004) A769.
[5] C. Kim, S.-H. Park, W.-J. Lee, K.-S. Yang, Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning, Electrochimica Acta 50(2-3) (2004) 877-881.
[6] E.J. Ra, E. Raymundo-Piñero, Y.H. Lee, F. Béguin, High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper, Carbon 47(13) (2009) 2984-2992.
[7] L. Ji, Z. Lin, A.J. Medford, X. Zhang, Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material, Carbon 47(14) (2009) 3346-3354.
[8] Y.-W. Ju, S.-H. Park, H.-R. Jung, W.-J. Lee, Electrospun Activated Carbon Nanofibers Electrodes Based on Polymer Blends, Journal of The Electrochemical Society 156(6) (2009) A489.
[9] Y. Wu, C.V.R. Bobba, S. Ramakrishna, Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems, Current Organic Chemistry 17(13) (2013) 1411-1423.
[10] R. Ramya, R. Sivasubramanian, M.V. Sangaranarayanan, Conducting polymers-based electrochemical supercapacitors-Progress and prospects, Electrochimica Acta 101 (2013) 109-129.
[11] I. Shown, A. Ganguly, L.C. Chen, K.H. Chen, Conducting polymer-based flexible supercapacitor, Energy Sci. Eng. 3(1) (2015) 2-26.
[12] Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage, Chemical Society Reviews 44(19) (2015) 6684-6696.
[13] C.Y. CHEN, C.C. WANG, I.H. CHEN, PLASMA PROCESS APPARATUS AND PLASMA PROCESSING METHOD, 2008.
[14] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renewable and Sustainable Energy Reviews 58 (2016) 1189-1206.
[15] H. Helmholtz, Studien über electrische Grenzschichten, Annalen der Physik 243(7) (1879) 337-382.
[16] M. Gouy, Sur la constitution de la charge électrique à la surface d'un électrolyte, J. Phys. Theor. Appl. 9(1) (1910) 457-468.
[17] D.L. Chapman, LI. A contribution to the theory of electrocapillarity, Philosophical Magazine Series 6 25(148) (1913) 475-481.
[18] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chemical Society Reviews 38(9) (2009) 2520-2531.
[19] O. Stern, ZUR THEORIE DER ELEKTROLYTISCHEN DOPPELSCHICHT, Zeitschrift für Elektrochemie und angewandte physikalische Chemie 30(21-22) (1924) 508-516.
[20] F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and Electrolytes for Advanced Supercapacitors, Advanced Materials 26(14) (2014) 2219-2251.
[21] M. Hahn, M. Baertschi, O. Barbieri, J.-C. Sauter, R. Kötz, R. Gallay, Interfacial Capacitance and Electronic Conductance of Activated Carbon Double-Layer Electrodes, Electrochemical and Solid-State Letters 7(2) (2004) A33-A36.
[22] D. Qu, Studies of the activated carbons used in double-layer supercapacitors, Journal of Power Sources 109(2) (2002) 403-411.
[23] B. Conway, Electrochemical supercapacitors, (1999).
[24] B. Zhang, Y. Liu, Z. Huang, S. Oh, Y. Yu, Y.-W. Mai, J.-K. Kim, Urchin-like Li4Ti5O12-carbon nanofiber composites for high rate performance anodes in Li-ion batteries, Journal of Materials Chemistry 22(24) (2012) 12133-12140.
[25] A.V. Bazilevsky, A.L. Yarin, C.M. Megaridis, Co-electrospinning of Core−Shell Fibers Using a Single-Nozzle Technique, Langmuir 23(5) (2007) 2311-2314.
[26] H. Na, X. Liu, J. Li, Y. Zhao, C. Zhao, X. Yuan, Formation of core/shell ultrafine fibers of PVDF/PC by electrospinning via introduction of PMMA or BTEAC, Polymer 50(26) (2009) 6340-6349.
[27] C.K. Hong, K.S. Yang, S.H. Oh, J.-H. Ahn, B.-H. Cho, C. Nah, Effect of blend composition on the morphology development of electrospun fibres based on PAN/PMMA blends, Polymer International 57(12) (2008) 1357-1362.
[28] R. Khajavi, M. Abbasipour, Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers, Scientia Iranica 19(6) (2012) 2029-2034.
[29] N.C. Abeykoon, J.S. Bonso, J.P. Ferraris, Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends, RSC Advances 5(26) (2015) 19865-19873.
[30] Y. Qiu, J. Yu, T. Shi, X. Zhou, X. Bai, J.Y. Huang, Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: Large-scale production, unique structure, and application as electrocatalysts for oxygen reduction, Journal of Power Sources 196(23) (2011) 9862-9867.
[31] Z. Wangxi, L. Jie, W. Gang, Evolution of structure and properties of PAN precursors during their conversion to carbon fibers, Carbon 41(14) (2003) 2805-2812.
[32] M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber, Polymer Degradation and Stability 92(8) (2007) 1421-1432.
[33] S.L. Candelaria, B.B. Garcia, D. Liu, G. Cao, Nitrogen modification of highly porous carbon for improved supercapacitor performance, Journal of Materials Chemistry 22(19) (2012) 9884-9889.
[34] L.G. Bulusheva, E.O. Fedorovskaya, A.G. Kurenya, A.V. Okotrub, Supercapacitor performance of nitrogen-doped carbon nanotube arrays, physica status solidi (b) 250(12) (2013) 2586-2591.
[35] Y.-H. Lee, K.-H. Chang, C.-C. Hu, Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes, Journal of Power Sources 227(0) (2013) 300-308.
[36] C.-T. Hsieh, H. Teng, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon 40(5) (2002) 667-674.
[37] T. Maitra, S. Sharma, A. Srivastava, Y.-K. Cho, M. Madou, A. Sharma, Improved graphitization and electrical conductivity of suspended carbon nanofibers derived from carbon nanotube/polyacrylonitrile composites by directed electrospinning, Carbon 50(5) (2012) 1753-1761.
[38] Z. Tai, X. Yan, J. Lang, Q. Xue, Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets, Journal of Power Sources 199 (2012) 373-378.
[39] Z. Zhou, X.-F. Wu, Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization, Journal of Power Sources 222 (2013) 410-416.
[40] Q. Guo, X. Zhou, X. Li, S. Chen, A. Seema, A. Greiner, H. Hou, Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes, Journal of Materials Chemistry 19(18) (2009) 2810-2816.
[41] W.-J. Chou, C.-C. Wang, C.-Y. Chen, Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes, Composites Science and Technology 68(10–11) (2008) 2208-2213.
[42] W.-J. Chou, C.-C. Wang, C.-Y. Chen, The Improvement of Electrical Property of Multiwalled Carbon Nanotubes with Plasma Modification and Chemical Oxidation in the Polymer Matrix, J Inorg Organomet Polym 19(2) (2009) 234-242.
[43] I.H. Chen, C.-C. Wang, C.-Y. Chen, Fabrication and Structural Characterization of Polyacrylonitrile and Carbon Nanofibers Containing Plasma-Modified Carbon Nanotubes by Electrospinning, The Journal of Physical Chemistry C 114(32) (2010) 13532-13539.
[44] W.-M. Chang, C.-C. Wang, C.-Y. Chen, Plasma Treatment of Carbon Nanotubes Applied to Improve the High Performance of Carbon Nanofiber Supercapacitors, Electrochimica Acta 186 (2015) 530-541.
[45] E. Jo, J.-G. Yeo, D.K. Kim, J.S. Oh, C.K. Hong, Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends, Polymer International 63(8) (2014) 1471-1477.
[46] L. Zhang, Y.-L. Hsieh, Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylonitrile systems, European Polymer Journal 45(1) (2009) 47-56.
[47] L. Ji, X. Zhang, Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries, Nanotechnology 20(15) (2009) 155705.
[48] C.-C. Lai, C.-T. Lo, Preparation of Nanostructural Carbon Nanofibers and Their Electrochemical Performance for Supercapacitors, Electrochimica Acta 183 (2015) 85-93.
[49] R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta 45(15–16) (2000) 2483-2498.
[50] F. Béguin, E. Frackowiak, Carbons for electrochemical energy storage and conversion systems, CRC Press2009.
[51] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources 196(1) (2011) 1-12.
[52] T.K. Das, S. Prusty, Review on Conducting Polymers and Their Applications, Polym.-Plast. Technol. Eng. 51(14) (2012) 1487-1500.
[53] H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, Theoretical and experimental specific capacitance of polyaniline in sulfuric acid, Journal of Power Sources 190(2) (2009) 578-586.
[54] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chemical Society Reviews 41(2) (2012) 797-828.
[55] I. Kovalenko, D.G. Bucknall, G. Yushin, Detonation Nanodiamond and Onion-Like-Carbon-Embedded Polyaniline for Supercapacitors, Advanced Functional Materials 20(22) (2010) 3979-3986.
[56] S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline, Progress in Polymer Science 34(8) (2009) 783-810.
[57] M. Kotal, A.K. Thakur, A.K. Bhowmick, Polyaniline–Carbon Nanofiber Composite by a Chemical Grafting Approach and Its Supercapacitor Application, ACS Applied Materials & Interfaces 5(17) (2013) 8374-8386.
[58] W.-M. Chang, C.-C. Wang, C.-Y. Chen, Plasma-Induced Polyaniline Grafted on Carbon Nanotube-embedded Carbon Nanofibers for High-Performance Supercapacitors, Electrochimica Acta 212 (2016) 130-140.
[59] D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G.Q. Lu, H.-M. Cheng, Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode, ACS Nano 3(7) (2009) 1745-1752.
[60] Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films, ACS Nano 4(4) (2010) 1963-1970.
[61] K. Wang, P. Zhao, X. Zhou, H. Wu, Z. Wei, Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites, Journal of Materials Chemistry 21(41) (2011) 16373-16378.
[62] L. Mao, K. Zhang, H.S. On Chan, J. Wu, Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode, Journal of Materials Chemistry 22(1) (2012) 80-85.
[63] S. He, J. Wei, F. Guo, R. Xu, C. Li, X. Cui, H. Zhu, K. Wang, D. Wu, A large area, flexible polyaniline/buckypaper composite with a core-shell structure for efficient supercapacitors, Journal of Materials Chemistry A 2(16) (2014) 5898-5902.
[64] M. Kim, C. Lee, J. Jang, Fabrication of Highly Flexible, Scalable, and High-Performance Supercapacitors Using Polyaniline/Reduced Graphene Oxide Film with Enhanced Electrical Conductivity and Crystallinity, Advanced Functional Materials 24(17) (2014) 2489-2499.
[65] J. Luo, Q. Ma, H. Gu, Y. Zheng, X. Liu, Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor, Electrochimica Acta 173 (2015) 184-192.
[66] S. Yu, D. Liu, S. Zhao, B. Bao, C. Jin, W. Huang, H. Chen, Z. Shen, Synthesis of wood derived nitrogen-doped porous carbon-polyaniline composites for supercapacitor electrode materials, RSC Advances 5(39) (2015) 30943-30949.
[67] F. Miao, C. Shao, X. Li, N. Lu, K. Wang, X. Zhang, Y. Liu, Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors, Energy 95 (2016) 233-241.
[68] Y. Wang, S. Tang, S. Vongehr, J. Ali Syed, X. Wang, X. Meng, High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites, Scientific Reports 6 (2016) 12883.
[69] F. Anton, Process and apparatus for preparing artificial threads, Google Patents, 1934.
[70] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology 63(15) (2003) 2223-2253.
[71] T.J. Sill, H.A. von Recum, Electro spinning: Applications in drug delivery and tissue engineering, Biomaterials 29(13) (2008) 1989-2006.
[72] M. Mirjalili, S. Zohoori, Review for application of electrospinning and electrospun nanofibers technology in textile industry, Journal of Nanostructure in Chemistry 6(3) (2016) 207-213.
[73] S. Peng, L. Li, J. Kong Yoong Lee, L. Tian, M. Srinivasan, S. Adams, S. Ramakrishna, Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage, Nano Energy 22 (2016) 361-395.
[74] J.A. Matthews, G.E. Wnek, D.G. Simpson, G.L. Bowlin, Electrospinning of Collagen Nanofibers, Biomacromolecules 3(2) (2002) 232-238.
[75] Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou, D.H. Reneker, H. Fong, Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties, Polymer 50(13) (2009) 2999-3006.
[76] D. Sun, C. Chang, S. Li, L. Lin, Near-Field Electrospinning, Nano Letters 6(4) (2006) 839-842.
[77] C. Chang, V.H. Tran, J. Wang, Y.K. Fuh, L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency, Nano Lett 10(2) (2010) 726-31.
[78] S.A. Theron, A.L. Yarin, E. Zussman, E. Kroll, Multiple jets in electrospinning: experiment and modeling, Polymer 46(9) (2005) 2889-2899.
[79] O.O. Dosunmu, G.G. Chase, W. Kataphinan, D.H. Reneker, Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface, Nanotechnology 17(4) (2006) 1123.
[80] O. Jirsak, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, J. Chaloupek, A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method, Google Patents, 2005.
[81] H. Niu, X. Wang, T. Lin, Needleless electrospinning: influences of fibre generator geometry, The Journal of The Textile Institute 103(7) (2012) 787-794.
[82] B. Lu, Y. Wang, Y. Liu, H. Duan, J. Zhou, Z. Zhang, Y. Wang, X. Li, W. Wang, W. Lan, E. Xie, Superhigh-Throughput Needleless Electrospinning Using a Rotary Cone as Spinneret, Small 6(15) (2010) 1612-1616.
[83] Y. Liu, L. Dong, J. Fan, R. Wang, J.-Y. Yu, Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning, Journal of Applied Polymer Science 120(1) (2011) 592-598.
[84] M.R. Badrossamay, H.A. McIlwee, J.A. Goss, K.K. Parker, Nanofiber Assembly by Rotary Jet-Spinning, Nano Letters 10(6) (2010) 2257-2261.
[85] C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering, Biomaterials 25(5) (2004) 877-886.
[86] P.D. Dalton, D. Klee, M. Möller, Electrospinning with dual collection rings, Polymer 46(3) (2005) 611-614.
[87] D. Li, Y. Wang, Y. Xia, Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays, Nano Letters 3(8) (2003) 1167-1171.
[88] J.M. Deitzel, J.D. Kleinmeyer, J.K. Hirvonen, N.C. Beck Tan, Controlled deposition of electrospun poly(ethylene oxide) fibers, Polymer 42(19) (2001) 8163-8170.
[89] C.C. Liao, S.S. Hou, C.C. Wang, C.Y. Chen, Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: The effects of molecular motion and conformation in solutions, Polymer 51(13) (2010) 2887-2896.
[90] C.C. Liao, C.C. Wang, C.Y. Chen, Stretching-induced crystallinity and orientation of polylactic acid nanofibers with improved mechanical properties using an electrically charged rotating viscoelastic jet, Polymer (United Kingdom) 52(19) (2011) 4303-4318.
[91] C.C. Liao, C.C. Wang, C.Y. Chen, W.J. Lai, Stretching-induced orientation of polyacrylonitrile nanofibers by an electrically rotating viscoelastic jet for improving the mechanical properties, Polymer 52(10) (2011) 2263-2275.
[92] W.-M. Chang, C.-C. Wang, C.-Y. Chen, The combination of electrospinning and forcespinning: Effects on a viscoelastic jet and a single nanofiber, Chemical Engineering Journal 244 (2014) 540-551.
[93] D.H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers, Polymer 49(10) (2008) 2387-2425.
[94] C.C. Liao, C.C. Wang, K.C. Shih, C.Y. Chen, Electrospinning fabrication of partially crystalline bisphenol A polycarbonate nanofibers: Effects on conformation, crystallinity, and mechanical properties, European Polymer Journal 47(5) (2011) 911-924.
[95] D. Zhu, C. Xu, N. Nakura, M. Matsuo, Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution, Carbon 40(3) (2002) 363-373.
[96] P. Heikkila, A. Harlin, Electrospinning of polyacrylonitrile (PAN) solution: Effect of conductive additive and filler on the process, Express Polymer Letters 3(7) (2009) 437-445.
[97] E. Frackowiak, Carbon materials for supercapacitor application, Physical Chemistry Chemical Physics 9(15) (2007) 1774-1785.
[98] N.P. Wickramaratne, J. Xu, M. Wang, L. Zhu, L. Dai, M. Jaroniec, Nitrogen Enriched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO2 Adsorption, Chemistry of Materials 26(9) (2014) 2820-2828.
[99] T. Tevi, H. Yaghoubi, J. Wang, A. Takshi, Application of poly (p-phenylene oxide) as blocking layer to reduce self-discharge in supercapacitors, Journal of Power Sources 241(0) (2013) 589-596.
[100] A. Lewandowski, P. Jakobczyk, M. Galinski, M. Biegun, Self-discharge of electrochemical double layer capacitors, Physical Chemistry Chemical Physics 15(22) (2013) 8692-8699.
[101] T. Tevi, A. Takshi, Modeling and simulation study of the self-discharge in supercapacitors in presence of a blocking layer, Journal of Power Sources 273 (2014) 857-862.
[102] Y.-R. Nian, H. Teng, Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance, Journal of The Electrochemical Society 149(8) (2002) A1008-A1014.
[103] A. Yu, V. Chabot, J. Zhang., Fundamentals of Electrochemical Pseudocapacitors, Electrochemical Supercapacitors for Energy Storage and Delivery, CRC Press2013, pp. 99-134.
[104] J. Zhang, C. Liu, G. Shi, Raman spectroscopic study on the structural changes of polyaniline during heating and cooling processes, Journal of Applied Polymer Science 96(3) (2005) 732-739.
[105] S.-B. Yoon, E.-H. Yoon, K.-B. Kim, Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications, Journal of Power Sources 196(24) (2011) 10791-10797.
[106] A. Lodha, S.M. Kilbey, P.C. Ramamurthy, R.V. Gregory, Effect of annealing on electrical conductivity and morphology of polyaniline films, Journal of Applied Polymer Science 82(14) (2001) 3602-3610.
[107] W.-C. Chen, T.-C. Wen, H. Teng, Polyaniline-deposited porous carbon electrode for supercapacitor, Electrochimica Acta 48(6) (2003) 641-649.
[108] Y.-E. Miao, W. Fan, D. Chen, T. Liu, High-Performance Supercapacitors Based on Hollow Polyaniline Nanofibers by Electrospinning, ACS Applied Materials & Interfaces 5(10) (2013) 4423-4428.
[109] X. Wang, J. Deng, X. Duan, D. Liu, J. Guo, P. Liu, Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors, Journal of Materials Chemistry A 2(31) (2014) 12323-12329.
[110] C.-W. Huang, C.-T. Hsieh, P.-L. Kuo, H. Teng, Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes, Journal of Materials Chemistry 22(15) (2012) 7314.
[111] T. Kaura, R. Nath, M.M. Perlman, SIMULTANEOUS STRETCHING AND CORONA POLING OF PVDF FILMS, Journal of Physics D-Applied Physics 24(10) (1991) 1848-1852.
[112] P. Sajkiewicz, A. Wasiak, Z. Goclowski, Phase transitions during stretching of poly(vinylidene fluoride), European Polymer Journal 35(3) (1999) 423-429.
[113] Y.D. Jiang, Y. Ye, J.S. Yu, Z.M. Wu, W. Li, J.H. Xu, G.Z. Xiel, Study of thermally poled and corona charged poly(vinylidene fluoride) films, Polymer Engineering and Science 47(9) (2007) 1344-1350.
[114] W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity: Evolution and Future of a Technology, Springer Publishing Company, Incorporated2008.
[115] J.S. Andrew, D.R. Clarke, Enhanced ferroelectric phase content of polyvinylidene difluoride fibers with the addition of magnetic nanoparticles, Langmuir 24(16) (2008) 8435-8438.
[116] S. Huang, W.A. Yee, W.C. Tjiu, Y. Liu, M. Kotaki, Y.C.F. Boey, J. Ma, T.X. Liu, X.H. Lu, Electrospinning of Polyvinylidene Difluoride with Carbon Nanotubes: Synergistic Effects of Extensional Force and Interfacial Interaction on Crystalline Structures, Langmuir 24(23) (2008) 13621-13626.
[117] W.A. Yee, A.C. Nguyen, P.S. Lee, M. Kotaki, Y. Liu, B.T. Tan, S. Mhaisalkar, X.H. Lu, Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk, Polymer 49(19) (2008) 4196-4203.
[118] C.E. Chang, V.H. Tran, J.B. Wang, Y.K. Fuh, L.W. Lin, Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency, Nano Letters 10(2) (2010) 726-731.
[119] Y.L. Liu, Y. Li, J.T. Xu, Z.Q. Fan, Cooperative Effect of Electrospinning and Nanoclay on Formation of Polar Crystalline Phases in Poly(vinylidene fluoride), Acs Applied Materials & Interfaces 2(6) (2010) 1759-1768.
[120] D. Mandal, S. Yoon, K.J. Kim, Origin of Piezoelectricity in an Electrospun Poly(vinylidene fluoride-trifluoroethylene) Nanofiber Web-Based Nanogenerator and Nano-Pressure Sensor, Macromolecular Rapid Communications 32(11) (2011) 831-837.
[121] Y. Ahn, J.Y. Lim, S.M. Hong, J. Lee, J. Ha, H.J. Choi, Y. Seo, Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride), The Journal of Physical Chemistry C 117(22) (2013) 11791-11799.
[122] M. Baqeri, M.M. Abolhasani, M.R. Mozdianfard, Q. Guo, A. Oroumei, M. Naebe, Influence of processing conditions on polymorphic behavior, crystallinity, and morphology of electrospun poly(VInylidene fluoride) nanofibers, Journal of Applied Polymer Science 132(30) (2015) n/a-n/a.
[123] S. Garain, S. Jana, T.K. Sinha, D. Mandal, Design of In Situ Poled Ce3+-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator, ACS Applied Materials & Interfaces 8(7) (2016) 4532-4540.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-01-15起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-02-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw