進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0710202015112500
論文名稱(中文) 微小化太陽極紫外線光度計之校正
論文名稱(英文) Calibration of A Miniaturized Solar Extreme Ultraviolet Probe
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 109
學期 1
出版年 109
研究生(中文) 孫振倫
研究生(英文) Zhen-Lun Sun
學號 LA6074059
學位類別 碩士
語文別 中文
論文頁數 65頁
口試委員 指導教授-陳炳志
口試委員-楊毅
口試委員-張起維
中文關鍵字 太陽極紫外線  鳳凰立方衛星  光電流  電漿電流 
英文關鍵字 solar extreme ultraviolet (EUV)  Phoenix cubesat  photoelectric current 
學科別分類
中文摘要 2017年4月,由成功大學團隊所研製的2-U立方衛星鳳凰號 (Phoenix cubesat) 參與歐盟QB50任務成功發射,並於隔月由國際太空站佈放於400公里高之軌道,成為台灣第一枚發射成功且順利運作的立方衛星。鳳凰號立方衛星的科學酬載除了離子與中性粒子質譜儀以及熱敏電阻外,還有本團隊自主研發之微小化太陽極紫外線光度計,其光度計使用兩種功函數不同的金屬,分別為金與錫,做為感測電極,可量得現地之電漿電流與太陽紫外光所產生之光電流。由於2015年研製該光度計時,本團隊尚缺乏量化光源之儀器,無法對微小化太陽極紫外線光度計進行校正,而僅能量測到相對的太陽極紫外光通量。備齊紫外光源量化儀器後,本論文將先前保留之鳳凰號立方衛星上的微小化太陽極紫外線光度計工程體透過實驗設計,完成定量校正並可轉換鳳凰號立方衛星量測現地之太陽極紫外光通量。由於空氣中的氧分子對紫外光有很強的吸收,因此紫外光的量化校正實驗不同於可見光更為困難。本論文先後進行了兩個量化校正實驗包含:實驗用之紫外光源光通量量化校正,並應用於微小化太陽極紫外線光度計之量化校正。實驗結果成功應用於鳳凰號立方衛星之太陽極紫外線量測數據,將量測現地之太陽紫外光電流變化值轉換成具科學意義之太陽極紫外光通量值。
英文摘要 The Phoenix cubesat was developed at National Cheng Kung University (NCKU) as a unit of the QB50 mission which is an international space collaboration coordinated by the von Karman Institute for Fluid Dynamics and it was launched successfully in April 2017 and deployed in the orbit of 400km-height from the International Space Station on May 17, 2017. The Phoenix cubesat accommodated the following payloads: An Ion and Neutral Mass Spectrometer, Thermistors, and a Solar Extreme Ultraviolet Probe (SEUV Probe) which was developed by NCKU. The SEUV Probe can measure photoelectric current when its cop-per-based electrodes which is plated with gold and tin exposes to the sun ultraviolet light. However, there was no suitable instrument to calibrate the SEUV Probe quantitatively, so that the SEUV Probe placed in the orbit only measured relative intensities of photoelectric current instead of the solar extreme ultraviolet flux. In this study, to complete the calibration of the SEUV Probe, a deuterium lamp was used as the ultraviolet light source, and a dark and vacuum environment was set to reduce the absorption caused by air. After calibration, the photoelectric current measured by the SEUV Probe on the Phoenix cubesat can be turned to the absolute flux of the solar extreme ultraviolet. With the features of lightweight, compact, and low power consumption, the calibrated SEUV probe can be placed not only on cubesat but on sounding rocket or balloon to obtain more data to explore the variation of the solar extreme ultraviolet flux.
論文目次 摘要-------I
Extended Abstract-------II
誌謝-------VII
目錄-------VIII
圖目錄-------X
表目錄-------XIII
第一章 簡介-------1
1.1 太陽活動與太陽紫外線-------1
1.2 太陽極紫外線的重要性與對地球大氣層的影響-------5
1.3 太陽極紫外線對太空天氣的影響-------8
1.4 量測太陽紫外線的衛星任務-------10
1.4.1 歐盟QB50任務-------12
1.4.2 Phoenix 鳳凰號立方衛星-------14
1.5 研究動機-------17
第二章 微小化太陽極紫外線光度計-------18
2.1 研發緣起-------18
2.2 微小化太陽極紫外線光度計之設計原理-------21
2.3 微小化太陽極紫外線光度計之電路設計-------24
第三章 實驗與數據分析-------31
3.1 實驗儀器及環境設定-------31
3.2 紫外光源之光通量量化實驗-------38
3.2.1 實驗步驟-------38
3.2.2 資料分析與討論-------40
3.3 微小化太陽極紫外線光度計校正實驗-------43
3.3.1 實驗步驟-------43
3.3.2 資料分析與討論-------45
3.4 實驗總結-------49
第四章 實驗數據應用與結論-------50
4.1 校正微小化太陽極紫外線光度計之衛星任務量測數據-------50
4.2 結論-------58
4.3 未來展望-------59
參考文獻-------61
附錄 遞迴平均值 (Recursive Mean)-------65

參考文獻 Active Standard ASTM E490 – 00a (2019), Standard Solar Constant and Zero Air Mass So-lar Spectral Irradiance Tables, ASTM Int’l, doi: 10.1520/E0490-00AR19.

Brace, L., W. Hoegy and R. Theis (1988), Solra EUV measurements at Venus based on photoelectron emission from the Pioneer Venus Langmuir probe, J. Geophys. Res., 93(A7), 7282-7296, doi:10.1029/JA093iA07p07282.

Brasseur, G. (1993), The response of the middle atmosphere to long-term and short-term so-lar variability: A two-dimensional model, J. Geophys. Res., 98(D12):23079-23090, doi: 10.1029/93JD02406.

Cleveland, J.C., Morris, C. (2013), Handbook of energy. Volume I: diagrams, charts and ta-bles, Elsevier, UK, doi: 10.1016/C2009-0-16729-6.

Emmert, J. T., J. M. Picone, and R. R. Meier (2008), Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near‐Earth objects, Geophys. Res. Lett., 35, L05101, doi: 10.1029/2007GL032809.

Fröhlich, C. and J. Lean (2004), Solar radiative output and its variability: Evidence and mechanisms, The Astron. And Astrophys. Rev., 12(4):273-320, doi: 10.1007/s00159-004-0024-1

Health, D. F. and M. P. Thekaekara (1977), The solar spectrum between 1200and 3000Å, un the Solar Output and Its Variation, edited by O. R. White, pp. 193-212, Colorado Asso-ciated University Press, Boulder.

Hedin, A. E. (1984), Correlations between thermospheric density and temperature, solar EUV flux, and 10.7‐cm flux variations, J. Geophys. Res., 89, 9828-9834, doi: 10.1029/JA089iA11p09828.

Hinteregger, H. E. (1981), Representations of solar EUV fluxes for aeronomical applications, Adv. Space Res., 1(12), 39-52, doi: 10.1016/0273-1177(81)90416-6.

Hinteregger, H. E., K. Fukui, and B. G. Gilson (1981), Observational, reference and model data on solar EUV, from measurements on AE-E, Geophys. Res. Lett., 8, 1147-1150, doi:10.1029/GL008i011p01147.

Hoegy, W. R. and K. K. Mahajan (1992), Solar EUV index for aeronomical studies at Earth from Langmuir probe photoelectron measurements on the Pioneer Venus Orbiter, J. Geophys. Res., 97(A7), 10525-10537, doi: 10.1029/92JA00384.

Huba, J. D., G. Joyce, J. A. Fedder (2000), Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 105,23,035-23,054, doi: 10.1029/2000JA000035.

Kelly, M. C. (2009), The Earth’s Ionosphere: Plasma Physics and Electrodynamics, second ed. International Geophysics Series, vol. 96., Academic Press, Burlington, MA.

King-Hele, D. G. (1987), Satellite Orbits in an Atmosphere: Theory and application, Spring-er.

Kockarts, G. (1981), Effects of solar variations on the upper atmosphere, Sol. Phys., 74, 295–320.

Lean, J. (1987), Solar ultraviolet irradiance variations: A review, J. Geophys. Res., 92(D1), 839-868, doi: 10.1029/JD092iD01p00839.

Lean, J. (1991),Variations in the Sun’s radiative output, Rev. Geophys., 29,505-535.

Lean, J. (1997), THE SUN’S VARIABLE RADIATION AND ITS RELEVANCE FOR EARTH1, Annual Review of Astronomy and Astrophysics, 35, 1, 33.

Lean, J., T. N. Woods, F. G. Eparvier, R. R. Meier, D. J. Strickland, J. T. Correira, andJ. S. Evans. (2011), Solar extreme ultraviolet irradiance: Present, past, and future, J. Geophys. Res., 116, A01102.

Leroy, J. L. (2000), Polarization of Light and Astronomical Observation, vol. 4 of Ad-vances in Astronomy and Astrophysics, Gordon & Breach Science.


Lilensten, J., T. Dudok de Wit, M. Kretzschmar, P. O. Amblard, S. Moussaoui, J. Aboudar-ham, and F. Auchère (2008), Review on the solar spectral variability in the EUV for space weather purposes, Ann. Geophys., 26, 269-279, doi:10.5194/angeo-26-269-2008.

Michaelson, H. B. (1977), J. Appl. Phys., 48(11), 47293.

National Academy of Sciences (1988), Long-term Solar-terrestrial Observations, National Academy Press.

Nicolson, I. (1982), The Sun, p. 28, Rand McNally.

Reeves, E. M. and W. H. Parkinson (1970), Calibration Changes in EUV Solar Satellite In-struments, Appl. Opt. 9, 1201-1208.

Rottman, G. J. (1988), Observations of solar UV and EUV variability, Advances in Space Research, 8, 7, 53, doi: 10.1016/0273-1177(88)90172-X.

Schmidtke, G. (1981), Solar irradiance below 120 nm and its variations, Sol. Phys., 74, 251-263.

Taguchi M., H. Fukunishi, H. Watanabe, S. Okano, Y. Takahashi, and T. D. Kawahara (2000), Ultraviolet imaging spectrometer (UVS) experiment on board the NOZOMI spacecraft: Instrumentation and initial results, Earth Planets Space, 52, 49-60.

Timothy, J. G. (1977), The solar spectrum between 300 and 1200 Å in The Solar Output and its Variation, edited by O. R. White, pp. 237-259, Colorado Associated University Press, Boulder.

White, O. R. (Ed.) (1977), The Solar Output and Its Variation, Colorado Associated Univer-sity Press, Boulder.

Woods, T. N. and G. J. Rottman (2002), Solar ultraviolet variability over time periods of aeronmic interest, American Geophysical Union, Washington D.C. 130: 5-3. doi: 10.1029/130GM14.


World Meteorological Organization, Global Ozone Research and Monitoring Project, Report of the International Ozone Trends Panel (1988), Rep. 18, Geneva.

Wuebbles, D. J., D. E. Kinnison, K. E. Grant, and J. Lean (1991), The Effect of Solar Flux Variations and Trace Gas Emissions on Recent Trends in Stratospheric Ozone and Temperature, J. Geomagnetism and Geoelectricity, 43, 709-718, doi: 10.5636/jgg.43.Supplement2_709.

Zioutas K., Tsagri M., Semertzidis T., Papaevangelou T., Danfni T., Anastassopoulos V. (2009), Axion Searches with Helioscopes and astrophysical signatures for axion(-like) par-ticles, New J. Phys., 11 105020, doi: 10.1088/1367-2630/11/10/105020.

曹祖維 (2015),「適用於皮米衛星任務之微小化太陽極紫外線光度計」,國立成功大學太空與電漿科學所碩士論文
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw