進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0709201511473800
論文名稱(中文) 駐極體之極化效應在有機場效記憶體元件的研究
論文名稱(英文) Polarization effect of electrets in organic field-effect transistor based memories
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 王鵬翰
研究生(英文) Peng-Han Wang
學號 L76024226
學位類別 碩士
語文別 中文
論文頁數 114頁
口試委員 指導教授-周維揚
口試委員-鄭弘隆
口試委員-唐富欽
口試委員-葉柏良
中文關鍵字 有機非揮發性記憶體  有機場效電晶體  極化效應  相分離 
英文關鍵字 organic non-volatile memory  organic field-effect transistors  polarization effect  phase separation 
學科別分類
中文摘要 本論文主要藉由摻雜具有載子捕獲能力與高介電係數之矽環氧材料在聚亞醯胺中(polyimide,PI),藉此提升材料的介電常數並透過控制製程參數使材料產生相分離現象,提升薄膜表面之極性能,探討極性官能基團的分佈對於有機記憶體元件之電特性與記憶特性的相關性,其中半導體材料使用P型半導體材料五苯環(pentacene)與本實驗自行合成之N型半導體材料十三烷基駢苯衍生物(PTCDI-C13H27),實驗中利用改良型高分子聚亞醯胺作為記憶體元件之介電修飾層與載子捕捉層,並摻入1 wt%的矽環氧分子,調控旋轉塗佈之成膜參數製作出具有不同表面極性的薄膜,分別為具極性基於表面的薄膜(RA9002+1%H3)與沒有相分離極性基於表面的薄膜(RA9002),並分別製作P型及N型之有機非揮發電晶體式記憶體。首先經由FTIR分析證實PI-RA9002+1%H3薄膜具有較強的羥基(-OH)振動,顯示材料有效的摻混於薄膜中,經由薄膜表面能及歐傑電子能譜儀分析驗證了PI-RA9002+1%H3材料於成膜過程的確有材料相分離的現象發生,具高極性的矽環氧材料會遷移至薄膜表面,在低轉速旋塗成膜時相分離程度最佳,極性基團埋於薄膜內,而在高轉速旋塗成膜時極性基團分佈較均勻,極性基則朝向薄膜表面,在元件電特性參數方面,無論是在P型或N型記憶元件在PI-RA9002+1%H3成膜轉速為6000 r.p.m.時皆有較佳的電特性,此結果與半導體薄膜特性分析之結果相符,極性基有助於半導體分子堆疊較緻密,增加分子間的耦合能,在施加一外加電場時,會使極性官能基團形成偶極場,在通道中提供額外的累積電荷,使電晶體之載子遷移率上升。在記憶體特性的部分,P型記憶體的寫入電洞能力較佳,可使臨界電壓產生20V之偏移,而又以RA9002+1%H3的寫入能力最佳,此型號的PI薄膜具有許多深層的電洞捕獲位置,加上極性基團提供的載子捕獲位置,使得載子較難以清除,因此對於一寫多讀(WORM)型的記憶體元件有很好的應用潛力;而當極性基在薄膜表面時會影響N型記憶體電子寫入的能力,造成N型記憶體記憶窗口降低。雖然薄膜表面的極性基都沒有使P型及N型的記憶窗口提升,但由電容電壓曲線分析,由於施加電壓造成極性基活化產生偶極場,對於半導體在介面累積載子能力有所提升,使元件飽和電流上升,當表面極性基團分佈較多時,電晶體元件之時間-輸出電流特性圖會產生電流增益的效應(N type)。本實驗利用光輔助的方式操作記憶元件,可大幅提升記憶窗口,在N型元件中,記憶窗口可提升至50V,在高轉速成膜時,矽環氧均勻分布薄膜內,有許多載子被陷捕於深層能帶中,且本研究中所使用之矽環氧材料主要提供電洞的捕獲位置造成電子寫入不易,故記憶窗口較小;於P型時,可將記憶窗口提升至20V,當極性基於表面分佈較少時,雖然增加的寫入能力較少,但因為極性基多分佈於薄膜表層,故利用光輔助能有效清除電洞載子,造成較大的記憶窗口,但於高轉速成膜時材料摻混較均勻或使得部分電洞載子被捕獲在深層能帶,會使電洞較難釋放,造成較小的記憶窗口。本研究驗證了高分子駐極體材料中的極性官能基是影響半導體的成長、電晶體電特性及記憶特性的要素之一,並透過摻混矽環氧材料提升電晶體元件之電特性。
英文摘要 In this study, we discuss the relationship between the electrical performance of organic non-volatile memory devices (ONVMs) and the distribution of carrier-trapping sites in polymer films. To increase the permittivity of polymeric dielectric (polyimide, PI) and charge-trapping ability for memory device, the siloxane derivatives bonded with high polarity hydroxyl groups (H3 molecules) was doped into dielectric polymer to form a polymeric electret. The degree of phase-separation phenomenon within PI films could be successfully modulated by controlling the parameters of spin coating process. High degree of phase-separation occurs in the PI-H3 film (with H3 molecules) formed by using low spin-coating speed to lead the abundance of polar groups at PI-H3/semiconductor interface, indicating that the polar group easily migrates to the surface of the PI film during the process of low spin-coating speed.
From the output characteristics of ONVMs, the saturated drain current of device with PI-H3 dielectric is obviously higher than that of device with intrinsic PI (without H3 molecules) dielectric. This result indicates that the electrical characteristics of ONVMs can be enhanced by the gate bias induced dipole field which is contributed from the dipoles near the surface of PI-H3 dielectric layer. However, the electron writing ability of N-type ONVMs with PI-H3 dielectric is lower than that with PI dielectric. On the contrary, the p-type ONVMs with PI-H3 dielectric has higher hole writing ability. The polarity H3 molecule seem favourable for hole trapping process in memory device.
In summary, we demonstrate that the electrical properties and memory effects of ONVMs can be generated by polar groups which distributed in polymer trapping layer. This result provides a simple route for designing high performance non-volatile transistor memory devices.
論文目次 中文摘要 I
EXTEND ABSTRACT III
誌謝 VIII
目錄 IX
表目錄 XIII
圖目錄 XV
第一章 緒論 1
1-1 記憶體元件簡介 1
1-1-1懸浮閘結構非揮發性記憶體 1
1-1-2 SONOS結構非揮發性記憶體 2
1-1-3奈米晶粒結構非揮發性記憶體 3
1-2 有機非揮發性記憶體的發展 4
1-3 研究動機 5
第二章 有機薄膜電晶體與記憶元件工作原理 10
2-1前言 10
2-2有機半導體傳輸機制 11
2-3有機薄膜電晶體基本結構 11
2-4有機薄膜電機體操作原理 11
2-5有機薄膜電晶體基本電特性與參數萃取方法 12
2-5-1汲極電流公式 12
2-5-2載子遷移率 13
2-5-3臨界電壓 14
2-5-4次臨界擺幅 14
2-5-5 電流開關比 14
2-6 有機非揮發性記憶體元件之操作原理 15
2-6-1記憶體寫入與清除原理 15
2-6-2記憶窗口 16
2-6-3記憶保持能力 16
2-6-4耐久度 16
2-7電容-電壓曲線特性 17
第三章 實驗方法 25
3-1實驗材料 25
3-1-1基板 25
3-1-2有機高分子絕緣材料 25
3-1-3 N型有機半導體材料 25
3-1-4 P型有機半導體材料 26
3-2元件製作流程 26
3-3實驗儀器介紹 27
3-3-1 氧電漿(O2 plasma) 27
3-3-2 旋轉塗佈(Spin coating) 28
3-3-3 物理氣相沉積(Physical Vapor Deposition,PVD) 28
3-4分析儀器介紹 28
3-4-1 接觸角分析儀(Contace-angle) 28
3-4-2 原子力顯微鏡(Atomic force microscope,AFM) 29
3-4-3 歐傑電子能譜儀(Auger Electron Spectroscopy, AES) 29
3-4-4 X-ray薄膜繞射儀(x-ray diffraction,XRD) 30
3-4-5 光激發螢光光譜儀(photoluminescence,PL) 30
3-4-6 時間解析光激螢光光譜(Time-resolved PL) 30
3-4-7 拉曼光譜儀(raman spectroscopy) 31
3-4-8傅里葉轉換紅外光譜(Fourier transform infrared,FTIR) 31
3-4-9 掃描式電子顯微鏡(SEM) 31
3-4-10半導體參數分析儀 32
3-4-11電容分析儀 32
第四章 實驗結果 38
4-1前言 38
4-2載子捕捉層薄膜特性分析 38
4-2-1 傅里葉轉換紅外光譜 38
4-2-2原子力顯微鏡分析 39
4-2-3 接觸角分析 39
4-2-4 歐傑電子能譜儀分析 41
4-2-5掃描式電子顯微鏡分析 42
4-2-6 電容-電壓分析 42
4-3 N型有機非揮發性記憶元件特性分析 42
4-3-1 原子力顯微鏡分析 43
4-3-2 X-Ray繞射分析 43
4-3-3 光激發螢光光譜分析 44
4-3-4 時間解析光譜分析 44
4-3-5 輸出特性曲線 45
4-3-6 轉換特性曲線 46
4-3-7 輸出電流-時間分析 47
4-3-8電荷累積-電場分析 47
4-3-9 表面極性基與記憶窗口之相關性分析 48
4-3-10 光輔助記憶體元件電性分析 49
4-3-11記憶保持能力 51
4-4 P型有機非揮發性記憶元件特性分析 51
4-4-1 原子力顯微鏡分析 52
4-4-2 X-Ray繞射分析 52
4-4-3 拉曼光譜分析 53
4-4-4 輸出特性曲線 55
4-4-5 轉換特性曲線 56
4-4-6 輸出電流-時間分析 57
4-4-7電荷累積-電場分析 57
4-4-8 表面極性基與記憶窗口之相關性分析 58
4-4-9 光輔助記憶體元件電性分析 59
第五章 結論 106
5-1實驗結論 106
5-2未來工作 107
參考文獻 109
參考文獻 [1] D. Kahng, S. M. Sze,"A FLOATING GATE AND ITS APPLICATION TO MEMORY DEVICES", Bell System Technical Journal, 46, 1288 (1967).
[2] J. De Blauwe,"Nanocrystal nonvolatile memory devices", Ieee Transactions on Nanotechnology, 1, 72 (2002).
[3] M. H. White, Y. L. Yang, A. Purwar, M. L. French,"A low voltage SONOS nonvolatile semiconductor memory technology", Ieee Transactions on Components Packaging and Manufacturing Technology Part A, 20, 190 (1997).
[4] H. Reisinger, M. Franosch, B. Hasler, T. Bohm, A novel SONOS structure for nonvolatile memories with improved data retention, 1997.
[5] M. H. White, D. A. Adams, J. K. Bu,"On the go with SONOS", Ieee Circuits & Devices, 16, 22 (2000).
[6] C. Kuo-Tung, C. Wei-Ming, C. Swift, J. M. Higman, W. M. Paulson, C. Ko-Min,"A new SONOS memory using source-side injection for programming", IEEE Electron Device Letters, 19, 253 (1998).
[7] J. K. Bu, M. H. White,"Effects of two-step high temperature deuterium anneals on SONOS nonvolatile memory devices", Ieee Electron Device Letters, 22, 17 (2001).
[8] T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, H. Tanaka, Novel multi-bit SONOS type flash memory using a high-k charge trapping layer, 2003.
[9] X. Peiqi, S. Min, B. Harteneck, A. Liddle, J. Bokor, T. J. King, FinFET SONOS flash memory for embedded applications, 2003.
[10] J. H. Han, J. H. Kim, S. H. Lee, C. Kim,"Fully compatible novel SNONOS structure for improved electrical performance in NAND Flash memories", Solid-State Electronics, 49, 1857 (2005).
[11] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, D. Finzi,"NROM: A novel localized trapping, 2-bit nonvolatile memory cell", Ieee Electron Device Letters, 21, 543 (2000).
[12] T. S. Chen, K. H. Wu, H. Chung, C. H. Kao,"Performance improvement of SONOS memory by bandgap engineering of charge-trapping layer", Ieee Electron Device Letters, 25, 205 (2004).
[13] R. Ohba, Y. Mitani, N. Sugiyama, S. Fujita, 25 nm planar bulk SONOS-type memory with double tunnel junction, 2006.
[14] H.-C. You, T.-H. Hsu, F.-H. Ko, J.-W. Huang, W.-L. Yang, T.-F. Lei,"SONOS-type flash memory using an HfO2 as a charge trapping layer deposited by the sol-gel spin-coating method", Ieee Electron Device Letters, 27, 653 (2006).
[15] T.-H. Hsu, H.-C. You, F.-H. Ko, T.-F. Lei,"PolySi-SiO2-ZrO2-SiO2-Si flash memory incorporating a sol-gel-derived ZrO2 charge trapping layer", Journal of the Electrochemical Society, 153, G934 (2006).
[16] Y. Q. Wang, D. Y. Gao, W. S. Hwang, C. Shen, G. Zhang, G. Samudra, Y. C. Yeo, W. J. Yoo, Fast erasing and highly reliable MONOS type memory with HfO 2 high-k trapping layer and Si 3N 4/SiO 2 tunneling stack, 2006.
[17] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, K. Chan,"A silicon nanocrystals based memory", Applied Physics Letters, 68, 1377 (1996).
[18] L. Jong Jin, K. Dim-Lee,"Metal nanocrystal memory with high-kappa tunneling barrier for improved data retention", IEEE Transactions on Electron Devices, 52, 507 (2005).
[19] T.-H. Hou, C. Lee, V. Narayanan, U. Ganguly, E. C. Kan,"Design optimization of metal nanocrystal memory - Part I: Nanocrystal array engineering", Ieee Transactions on Electron Devices, 53, 3095 (2006).
[20] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, D. Buchanan, Volatile and non-volatile memories in silicon with nano-crystal storage, 1995.
[21] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, Y. Lee,"Room temperature operation of a quantum-dot flash memory", Ieee Electron Device Letters, 18, 278 (1997).
[22] K. Ya-Chin, K. Tsu-Jae, H. Chenming, MOS memory using germanium nanocrystals formed by thermal oxidation of Si 1-xGe x, 1998.
[23] S. Choi, S. S. Kim, M. Chang, H. Hwang, S. Jeon, C. Kim,"Highly thermally stable TiN nanocrystals as charge trapping sites for nonvolatile memory device applications", Applied Physics Letters, 86, (2005).
[24] R. Waser,"Resistive non-volatile memory devices (Invited Paper)", Microelectronic Engineering, 86, 1925 (2009).
[25] Y. C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng,"Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application", Nano Letters, 9, 1636 (2009).
[26] M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongersma, J. Casperson, R. C. Flagan, H. A. Atwater,"Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices", Applied Physics Letters, 79, 433 (2001).
[27] A. Kanjilal, J. L. Hansen, P. Gaiduk, A. N. Larsen, N. Cherkashin, A. Claverie, P. Normand, E. Kapelanakis, D. Skarlatos, D. Tsoukalas,"Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy", Applied Physics Letters, 82, 1212 (2003).
[28] I. Kim, S. Han, K. Han, J. Lee, H. Shin,"Room temperature single electron effects in a Si nano-crystal memory", Ieee Electron Device Letters, 20, 630 (1999).
[29] C. D. Dimitrakopoulos, D. J. Mascaro,"Organic thin-film transistors: A review of recent advances", Ibm Journal of Research and Development, 45, 11 (2001).
[30] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl,"PHOTOINDUCED ELECTRON-TRANSFER FROM A CONDUCTING POLYMER TO BUCKMINSTERFULLERENE", Science, 258, 1474 (1992).
[31] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes,"LIGHT-EMITTING-DIODES BASED ON CONJUGATED POLYMERS", Nature, 347, 539 (1990).
[32] C. W. Tang, S. A. Vanslyke,"ORGANIC ELECTROLUMINESCENT DIODES", Applied Physics Letters, 51, 913 (1987).
[33] L. P. Ma, J. Liu, Y. Yang,"Organic electrical bistable devices and rewritable memory cells", Applied Physics Letters, 80, 2997 (2002).
[34] J. Y. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, Y. Yang,"Programmable polymer thin film and non-volatile memory device", Nature Materials, 3, 918 (2004).
[35] R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. de Leeuw, B. de Boer,"Organic Nonvolatile Memory Devices Based on Ferroelectricity", Advanced Materials, 22, 933 (2010).
[36] K.-J. Baeg, Y.-Y. Noh, J. Ghim, S.-J. Kang, H. Lee, D.-Y. Kim,"Organic non-volatile memory based on pentacene field-effect transistors using a polymeric gate electret", Advanced Materials, 18, 3179 (2006).
[37] Y.-H. Chou, H.-J. Yen, C.-L. Tsai, W.-Y. Lee, G.-S. Liou, W.-C. Chen,"Nonvolatile transistor memory devices using high dielectric constant polyimide electrets", Journal of Materials Chemistry C, 1, 3235 (2013).
[38] Z. Liu, F. Xue, Y. Su, Y. M. Lvov, K. Varahramyan,"Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric", Ieee Transactions on Nanotechnology, 5, 379 (2006).
[39] Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh,"Polymer electronic memories: Materials, devices and mechanisms", Progress in Polymer Science, 33, 917 (2008).
[40] K.-J. Baeg, D. Khim, J. Kim, B.-D. Yang, M. Kang, S.-W. Jung, I.-K. You, D.-Y. Kim, Y.-Y. Noh,"High-Performance Top-Gated Organic Field-Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory", Advanced Functional Materials, 22, 2915 (2012).
[41] R. Schroeder, L. A. Majewski, M. Grell,"All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator", Advanced Materials, 16, 633 (2004).
[42] R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, D. M. De Leeuw,"High-performance solution-processed polymer ferroelectric field-effect transistors", Nature Materials, 4, 243 (2005).
[43] H. E. Katz, X. M. Hong, A. Dodabalapur, R. Sarpeshkar,"Organic field-effect transistors with polarizable gate insulators", Journal of Applied Physics, 91, 1572 (2002).
[44] T. B. Singh, N. Marjanovic, G. J. Matt, N. S. Sariciftci, R. Schwodiauer, S. Bauer,"Nonvolatile organic field-effect transistor memory element with a polymeric gate electret", Applied Physics Letters, 85, 5409 (2004).
[45] M. Pope, P. Magnante, H. P. Kallmann,"ELECTROLUMINESCENCE IN ORGANIC CRYSTALS", Journal of Chemical Physics, 38, 2042 (1963).
[46] H. Koezuka, A. Tsumura, T. Ando,"FIELD-EFFECT TRANSISTOR WITH POLYTHIOPHENE THIN-FILM", Synthetic Metals, 18, 699 (1987).
[47] M. Ahlskog, J. Paloheimo, H. Stubb, A. Assadi,"PRESSURE-DEPENDENT OPERATION IN POLY(3-ALKYLTHIOPHENE) FIELD-EFFECT TRANSISTORS AND SCHOTTKY DIODES", Synthetic Metals, 65, 77 (1994).
[48] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J. M. Shaw,"Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators", Science, 283, 822 (1999).
[49] S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi,"High mobility n-type thin-film transistors based on N,N '-ditridecyl perylene diimide with thermal treatments", Applied Physics Letters, 89, (2006).
[50] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, T. D. Jones,"High performance organic thin film transistors", Organic and Polymeric Materials and Devices. Symposium (Mater. Res. Soc. Symposium Proceedings Vol.771), 169 (2003).
[51] J. T. W Lu, Y Wang, et al.,"Chem. J. Chinese U., 21, 501~508 (2000).
[52] L. F. Drummy, D. C. Martin,"Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films", Advanced Materials, 17, 903 (2005).
[53] L. Yi-Sheng, Y. Bo-Liang, T. Min-Ruei, C. Horng-Long, L. Shyh-Jiun, T. Fu-Ching, C. Wei-Yang,"Initial time-dependent current growth phenomenon in n-type organic transistors induced by interfacial dipole effects", Journal of Applied Physics, 117, 104507 (5 pp.) (2015).
[54] D. Knipp, R. A. Street, A. Volkel, J. Ho,"Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport", Journal of Applied Physics, 93, 347 (2003).
[55] G. Horowitz,"Organic thin film transistors: From theory to real devices", Journal of Materials Research, 19, 1946 (2004).
[56] S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, C. H. Chang,"Influence of postannealing on polycrystalline pentacene thin film transistor", Journal of Applied Physics, 95, 2293 (2004).
[57] C. D. Dimitrakopoulos, P. R. L. Malenfant,"Organic thin film transistors for large area electronics", Advanced Materials, 14, 99 (2002).
[58] L. Colangeli, V. Mennella, G. A. Baratta, E. Bussoletti, G. Strazzulla,"RAMAN AND INFRARED-SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBON MOLECULES OF POSSIBLE ASTROPHYSICAL INTEREST", Astrophysical Journal, 396, 369 (1992).
[59] S. E. Fritz, T. W. Kelley, C. D. Frisbie,"Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer", Journal of Physical Chemistry B, 109, 10574 (2005).
[60] S. Uemura, A. Komukai, R. Sakaida, T. Kawai, M. Yoshida, S. Hoshino, T. Kodzasa, T. Kamata,"The organic FET with poly(peptide) derivatives and poly(methyl-methacrylate) gate dielectric", Synthetic Metals, 153, 405 (2005).
[61] H. L. Cheng, W. Y. Chou, C. W. Kuo, F. C. Tang, Y. W. Wang,"Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy", Applied Physics Letters, 88, (2006).
[62] C. Horng-Long, C. Wei-Yang, K. Chia-Wei, M. Yu-Shen, T. Fu-Ching, L. Szu-Hao,"Studies of polycrystalline pentacene thin-film transistors at the microscopic level", Proceedings of the SPIE - The International Society for Optical Engineering, 6336, 63361B (2006).
[63] J. A. Last, A. C. Hillier, D. E. Hooks, J. B. Maxson, M. D. Ward,"Epitaxially driven assembly of crystalline molecular films on ordered substrates", Chemistry of Materials, 10, 422 (1998).
[64] W. Y. Chou, Y. S. Mai, H. L. Cheng, C. Y. Yeh, C. W. Kuo, F. C. Tang, D. Y. Shu, T. R. Yew, T. C. Wen,"Correlation of growth of pentacene films at various gas ambience conditions to organic field-effect transistor characteristics", Organic Electronics, 7, 445 (2006).
[65] H.-L. Cheng, Y.-S. Mai, W.-Y. Chou, L.-R. Chang,"Influence of molecular structure and microstructure on device performance of polycrystalline pentacene thin-film transistors", Applied Physics Letters, 90, (2007).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw